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Abstract We consider the problem of interpolating a surface based on
sparse data such as individual points or level lines. We derive interpola-
tors satisfying a list of desirable properties with an emphasis on preser-
ving the geometry and characteristic features of the contours while ensu-
ring smoothness across level lines. We propose an anisotropic third-order
model and an efficient method to adaptively estimate both the surface
and the anisotropy. Our experiments show that the approach outper-
forms AMLE and higher-order total variation methods qualitatively and
quantitatively on real-world digital elevation data.

1 Introduction

We consider the problem of reconstructing an unknown two-dimensional height
map u : Ω → R on a two-dimensional domain Ω ⊆ R2, based on the values of
u on a small number of level lines: u(x) = li for x ∈ Ci, i = 1, . . . , N , where
Ci = u−1({li}) are the known level lines.

This is a problem that often appears in connection with digital elevation
maps (DEMs), such as in DEM reconstruction from sparse measurements or
tidal coastline data. Efficient DEM reconstruction methods might also lead to
more adapted compression algorithms for DEMs, although we will not consider
this application here.

In this work we are particularly concerned with approaches that do not im-
pose regularity on the level lines. This follows from the observation that in DEMs,
kinks in the level lines are characteristic features of the underlying surface, and
should therefore be propagated rather than removed.

We consider the following generic variational approach:

min
u
{R(u), u(x) = u0(x) for x ∈ C}, (1)

where R(·) is an appropriate regularizing term, and C ⊆ Ω is the set on which
the data is known. This approach is slightly more generic than the reconstruction
from full level lines, and can also be applied if only parts of the contours – or
even only the values on a set of disjoint points – are known.

In particular, we do not require a parameterization of the level lines Ci, but
rather rely on a grid discretization of the surface u only, as finding and matching
such parameterizations is a major task in itself.
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Figure 1. Surface interpolation for digital elevation maps (DEMs). Left: Exemplary
digital elevation map. DEMs have a unique structure which requires careful considera-
tion when choosing a regularizer to avoid removing important features. Right: Surface
interpolation problem. Based on the given level lines (blue) the task is to reconstruct
the surface between the level lines. A particular difficulty is that level lines can have
points of high curvature or even be non-smooth (marked rectangular regions), while
there are generally no non-differentiabilities when crossing the contours along a path
that associates similar points (red). The proposed approach relies on a vector field v
(red arrows) that approximates the tangents to such paths in conjunction with a sui-
table anisotropic regularizer.

The main difficulty lies of course in the choice of the regularizer R in order to
incorporate knowledge about the unique structure of DEMs (Fig. 1, left). The
assumption underlying the remainder of this work is that the level lines of u
can be non-smooth, but are generally “similar” to each other, i.e., points on two
sufficiently close level lines can be associated with each other (Fig. 1, right). We
therefore postulate the following three requirements on the reconstruction:

(P1) The surface should coincide with the given data on the set C.

(P2) The interpolated level lines should preserve the geometry of the given level
lines – in particular, non-differentiabilities – as accurately as possible.

(P3) The interpolated surface should define a smooth transition – at least conti-
nuity of the gradient – across level lines (e.g, along the red path in Fig. 1).

Contribution. Based on these requirements and motivated by the recent suc-
cess of higher-order total variation models, we discuss different choices for the
regularizer R based on L1-norms of second- and third-order derivatives.

We demonstrate that for an interpolation algorithm to fulfil the above re-
quirements (P2)-(P3) a third-order regularizer R is needed, and moreover it is
necessary to include directional information, i.e., anisotropy, in the form of an
auxiliary vector field v that incorporates information about the relation between
adjacent level lines. We propose an efficient method to approximate the unknown
vector field v for a known surface u as the direction in which the normals of the
level lines change least (Sect. 2).

The performance of the method on synthetic examples suggests that the
proposed method satisfies (P1)–(P3), and moreover that the surface u and the
directional vector field v can be efficiently jointly estimated. We conclude by
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a quantitative comparison on real-world DEM data against AMLE and higher-
order total variation methods (Sect. 3).

Related models. In the literature on surface interpolation two main streams
of methods can be found. The first one is the explicit parameterization of given
level lines of the surface with subsequent pointwise matching and interpolation
steps [12,16,15].

One standard method to construct DEMs from a given set of level lines is
to use Geodesic Distance Transformations [19,20]. Here the interpolant between
two level contours is constructed pointwise as the linear interpolation between
their level values with respect to the geodesic distance.

A major drawback of such contour-based methods is that they require an
explicit parameterization of the given level lines, which may require a substantial
amount of preprocessing, intermediate reparameterisation, or may even fail in
the presence of scattered and sparse surface data. Furthermore, they generally
do not enforce a continuity of the slope across the level lines. For these reasons,
we shall not consider them here.

Our proposed approach belongs to the second methodological stream: surface
interpolation based on processing the surface as a function of height over a
domain in R2.

One of the most successful and most widely used interpolation approaches
within this class is the PDE-based absolutely minimizing Lipschitz extension
(AMLE) interpolation method [3,6]. AMLE interpolation is a diffusion-based
interpolation method that has been very successfully applied to the interpolation
of elevation maps [2]. An interpolant u of height values φ given on the boundary
of a hole Ω ⊂ R2 is computed as a viscosity solution of

D2u

(
Du

|Du|
,
Du

|Du|

)
= 0 in Ω, u|∂Ω = φ, (2)

where the quadratic form D2u(·, ·) is defined as D2u (x, y) =
∑
i,j xixj

∂2u
∂xi∂xj

.

As proved in [6], AMLE interpolation is able to interpolate data given in iso-
lated points and on level lines. This property distinguishes AMLE from simpler
PDE-based interpolation approaches such as the Laplace equation, and makes
it an ideal candidate for surface interpolation. However, level lines of AMLE in-
terpolants are smooth: in [18], Savin proved that a solution of (2) is C1-regular
in two space dimensions, which makes the perfect reconstruction of sharp cusps
and kinks in a surface impossible.

Another drawback of AMLE interpolation is that it cannot interpolate slopes
of a surface. In order to extend a PDE-interpolator like (2) to take into account
gradient information as well, one requires to introduce fourth-order differential
operators into the equation. Among others, the thin plate spline interpolator is
one of the simplest fourth-order surface interpolation models, see [17,8,14,9,5]
for instance. There, the interpolated surface is constructed by solving

∆2u = 0 in Ω, u = φ on ∂Ω,
∂u

∂n
= ψ on ∂Ω, (3)
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Figure 2. Surface interpolation on synthetic data using quadratic interpolation and
AMLE. The input contours are marked in blue and were prescribed on 25% of their
points. Quadratic interpolation by solving Laplace’s equation smoothes out the level
lines; characteristic features such as the non-differentiabilities along the ridges are lost.
AMLE preserves such features but does not cope very well with the sparsity of the
data. With full data, AMLE introduces less artifacts but generates an additional kink
on the middle blue level curve with prescribed value.

where φ and ψ are the given height and the gradient of the surface in normal
direction to the curve ∂Ω, respectively. While this model allows to incorporate
both grey values and gradient information into the interpolation process, the
interpolated surface is generally too smooth, still not preserving sharp surface
features (see also Fig. 3 below).

PDE-based interpolation approaches such as (2) and (3) are closely related
to certain types of statistical interpolation procedures. A standard technique
within this framework is Kriging [13,7,11,21]. Here, the interpolated surface is
defined as a realization of a random field, of which a finite number of values at
some sites of R2 is fixed. For a detailed account on surface interpolation methods
and their interrelations we refer to [1].

2 Anisotropic higher-order regularizers

Proposed model. We would first like to point out some observations to illus-
trate the points made in the introduction and to motivate the specific choice of
an anisotropic third-order regularizer:

Non-differentiabilities in the level lines should be preserved. To motivate (P2),
consider the synthetic example in Fig. 2, where the level lines of the ground truth
are piecewise linear with quadratic spacing. The example demonstrates that
preserving and extrapolating non-smooth features on the level lines according
to (P2) is important for a good visual quality of the result: classic inpainting
using R(u) =

∫
Ω
‖Du‖L2 (i.e., solving the Laplace equation) results in smooth

level lines. The example in Fig. 2 clearly shows that such features need to be
preserved to obtain a good reconstruction.

The model should be able to cope with partial or sparse data. Data where only
parts of the lines are known is common, as for example when extracting level
lines from satellite images or individual measurements. Such data is hard to deal
with using models that are based on matching and interpolation of explicit para-
meterizations of the contours, as obtaining the parameterizations then becomes a
major problem. This motivates the “wholistic” variational approach (1). AMLE
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original thin plate TV(2) TV(3)

Figure 3. Effect of isotropic second- and third-order TV-based regularization. Al-
though less pronounced than in the quadratically regularized (cf. Fig. 2) and thin-
plate model, isotropic higher-order regularization enforces too much smoothness and
motivates the introduction of anisotropy.

seems to be prone to introducing artifacts when data is sparse or partly missing,
and fails to correctly extrapolate data outside the region defined through the
prescribed level lines (Fig. 2).

Non-smooth second-order models tend to introduce kinks. With full data on
the level lines, AMLE performs better but introduces a sharp bend at the middle
prescribed level line, i.e., a line where the slope changes. This is a typical feature
of non-smooth second-order models such as (2). We refer to the experimental
section for a comparison.

Isotropic higher-order regularization generates too much smoothness. One ob-
vious choice for the regularizer is to use third-order total variation-based regu-
larization by setting R(u) =

∫
Ω
‖D3u‖. Unfortunately this enforces too much

smoothness on u, as can be seen in Fig. 3; even second-order regularization is
much too smooth.

In order to address the above issues, we propose to introduce an auxiliary
vector field v : Ω → R2 and consider anisotropic models of the form

R
(3)
1 (u) :=

∫
Ω

‖D3u(v, ·, ·)‖, R(3)
2 (u) :=

∫
Ω

‖D3u(v, v, ·)‖, R(3)
3 (u) :=

∫
Ω

‖D3u(v, v, v)‖,

(4)

where D3u are the third-order derivatives of the height map u, and ‖ · ‖ refers to
the usual Euclidean norm. In full generality, D3u can be defined as a measure on
the Borel functions fromΩ to R2×2×2, see [4] for the technical details. For smooth
functions, D3u(x) is the 2× 2× 2 tensor of all third-order partial derivatives.

The dot-notation refers to partial specialization: restricting ourselves to suf-
ficiently smooth functions for simplicity, D3u(v, ·, ·)(x) is a 2 × 2 matrix des-
cribing the derivative of the Hessian in the direction of v, D3u(v, v, ·)(x) is the
2-dimensional vector of the second derivatives in the direction of v of the gra-
dient, and D3u(v, v, v)(x) is the (scalar) third derivative of u in the direction
of v.The difference between the regularizers in (4) is thus the level of anisotropy:

even for a constant vector field v = (1, 0), the regularizer R
(3)
1 still includes some

mixed derivatives, while R
(3)
3 uses purely derivatives in the direction of v.

In a similar manner we define the second-order anisotropic regularizersR
(2)
1 :=∫

Ω
‖D2u(v, ·)‖ and R

(2)
2 :=

∫
Ω
‖D2u(v, v)‖. The isotropic regularizers TV(3) :=
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Ω
‖D3u‖ and TV(2) :=

∫
Ω
‖D2u‖ are just the usual second- and third-order

total variation regularizers.
Crucially, the vector field v associates points on neighbouring level lines.

More precisely, we assume that any path through v, i.e., a path C : [c1, c2]→ R2

with c1 < c0 < c2 and C(c0) = x and tangents v(C(c)) relates the point x to
matching points on other level curves (see Fig. 1).

As an example, consider u(x1, x2) = x21 − x2, where the level curves are
parabolas translated along the x2 axis. For x = (x1, 0), the path C(c) = (0, x21−c)
returns the point corresponding to x on the level set for level c, and we can set
v(x) = (0,−1).

The rationale behind this choice for v is precisely (P3): smoothness is desi-
rable, but only across the level lines (P2). The vector field v gives meaning to
the rather vague definition of “across”. It is not obvious which of the variants is
the best choice, therefore we refer to the experimental section for a discussion
of their qualitative differences.

The auxiliary vector field. Finding v is generally a difficult problem, since it
requires matching corresponding points on different level lines. In this work, we
propose to use for v(x) the direction in which Du/|Du| changes least. Under the
simplifying assumption that the level lines are only translates of each other and
have non-zero curvature, this allows to correctly recover v (note that Du/|Du|
are the normals of the level curves).

With the notation A = D(Du/|Du|)(x) ∈ R2×2, the vector v(x) ∈ R2 can
be found by finding w ∈ S1 minimizing ‖Aw‖2. This amounts to computing the
basis vector associated with the minimal singular value of the 2×2 matrix A, for
which a closed-form solution is available. In order to increase robustness we add
a convolution with a Gaussian kernel Kσ with (small) variance σ2 and obtain

v(x) = arg min
w,‖w‖2=1

‖Kσ ∗ (D(Du/|Du|))(x)w‖2. (5)

While this gives good results when the level lines are sufficiently curved, the
vector field tends to show erratic behaviour on straight sections of the level
lines: if Du/|Du| is locally almost constant, small variations in u can lead to
random jumps in v due to the normalization to unit length. Therefore we solve
an additional quadratic minimization problem to ensure that v is sufficiently
smooth:

min
v′

1

2

∫
Ω

w(x)‖v′(x)− v(x)‖22dx+
ρ

2

∫
Ω

‖Dv′(x)‖22dx. (6)

While many choices for the weights w are conceivable, we found that the most
robust is to set w(x) to the largest singular value of Kσ ∗(D(Du/|Du|))(x). This
ensures that the smoothing is increased in areas where u is almost planar, and
decreased in regions where the level lines have large curvature and v is therefore
most likely accurate.

The solution of problem (6) can be easily found by solving a system of linear
equations, and an additional normalization step ensures that the vectors v have
unit length. In all our experiments we used a 9×9 convolution kernel with σ = 2.
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A subtle difficulty when applying (6) is that, while the regularizers in (4) are
invariant with respect to sign changes of v, problem (6) is not. We counter this
by normalizing the vector field v so that 〈v(x), Du(x)〉 6 0, i.e., v always points
towards the negative gradient of u. While slightly heuristic, this scheme seems
to work remarkably well in practice, and avoids having to solve more difficult
non-convex optimization problems involving unit length constraints.

For unknown u, we start with a random field v0 and alternate between mini-
mizing (1) to find uk+1 from vk and computing vk+1 from uk as outlined above.
Note that choosing v randomly approximately corresponds to using the isotro-

pic regularizers R
(3)
0 or R

(2)
0 , but has the additional advantage of introducing

randomness that can help to solve ambiguous situations (see below).

3 Experimental Results

We used the MOSEK commercial interior-point package to solve the fully as-
sembled problem. The examples were solved in less than one minute per outer
iteration on an Intel Core 2 Duo 2.66 GHz with 4 GB of memory.

Fixed directions. The first question to answer is which of the existing and
proposed schemes performs best with respect to the requirements postulated in
(P1)–(P3). In order to separate this aspect from the issue of finding the vec-
tor field v, we performed several experiments on synthetic examples with the
directions v set to a known ground-truth.

In Fig. 4 we compare different levels of anisotropy on a “pyramid” example.
The challenge comes from the fact that the contours around the tip cannot be
interpolated between two given level lines, but must be extrapolated, preserving
the non-smoothness in the level lines. Since in the ground truth the level lines
are scaled copies of each other, the vector field v can be explicitly computed as
v(x) = (x− x0)/‖(x− x0)‖2 with center x0 = (1/2, 1/2).

It can be seen that the regularizers with a higher level of directionality ge-
nerally perform better at reconstructing the pointed pyramid tip. However it
should be noted that this example is not very typical for digital elevation maps,
where a smoother result such as the one obtained using ‖D3u(v, ·, ·)‖ is more
likely appropriate. We also observed that higher levels of directionality seem to
result in harder optimization problems. This results in longer computation times
and sometimes less precise solutions with a slight smoothing effect.

The isotropic regularizers R
(3)
0 and R

(2)
0 enforce too much smoothness. The

second-order methods tend to introduce sharp bends along the given contours
due to their preference for piecewise planar surfaces.

Adaptive directions. Figure 5 shows that in the case of the “pyramid” example,
the vector field v can be effectively found through the iterative procedure out-
lined in Sect. 2, starting at random directions. The results are visually almost
indistinguishable from the results in Fig. 4 that were computed with known
ground truth v. We found that the number of required updates for v is very low,
usually the result as well as v were stationary after five outer iterations.
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original AMLE ‖D2u‖ ‖D2u(v, ·)‖, |D2u(v, v)|
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‖D3u‖ ‖D3u(v, ·, ·)‖ ‖D3u(v, v, ·)‖ |D3u(v, v, v)|
Figure 4. Comparison of different notions of anisotropy with known directions v. The
input consists of the contour lines marked in blue including the boundary of the domain,
and contains a level line around a region with a local maximum. In consequence, this
is an example for a problem that cannot be solved by pointwise interpolation between
contour lines. AMLE does not extrapolate the tip, and introduces kinks along the given
contours. The non-directional approaches result in smoothed-out contours. In contrast,
the directional methods do not smooth the level lines, but they still regularize – as
desired – the spacing of the contours to a varying amount.

‖D2u(v, ·)‖, |D2u(v, v)| ‖D3u(v, ·, ·)‖ ‖D3u(v, v, ·)‖ |D3u(v, v, v)|

Figure 5. Reconstruction of the pyramid example in Fig. 4 using adaptive adjustment
of the vector field v after 50 iterations. The surfaces are visually identical to the results
in Fig. 4, where v was set to the (known) ground truth.

In Fig. 6 we show a more challenging example that was deliberately chosen
so that the solution is ambiguous. This highlights a particular issue with the

isotropic regularizers R
(3)
0 and R

(2)
0 : as their overall energy is convex, even assu-

ming that both solutions are in fact minimizers of the isotropic energy, all convex
combinations of these solutions also have to be minimizers. Therefore the result
is an undesirable mixture of both solutions. The additional vector field v and
the randomness introduced in the first step effectively resolve the ambiguity.

In both examples third-order regularizers performed superior to second-order
methods. We attribute this to the tendency of second-order methods to generate
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Figure 6. Reconstruction of the “ambiguity” example using adaptive adjustment of
the vector field v with 50 outer iterations. The input contours (blue) allow two equally
good exact solutions. The non-directional approaches are entirely convex, and cannot
be expected to pick one of the two solutions; AMLE fails equally. The second-order
methods perform slightly better but introduce artificial non-differentiabilities. Using
third-order methods the ambiguity is resolved and one of the possible solutions is
correctly reconstructed.

planar patches, which greatly aggravates the problem of reliably computing v as
in (5). Again the algorithm settles quickly on one of the possible solutions and
converges in less than 10 outer iterations.

We would like to emphasize that all the above examples were constructed
using a minimal amount of level lines and specifically in order to highlight cha-
racteristics of the regularizer. On real-world data, the effects are generally much
less pronounced.

Reconstruction of digital elevation maps. Figure 7 shows the performance
of the proposed approach on real-world DEM data extracted from the National
Elevation Dataset (NED) [10]. The input consists of 10 contour lines with equally
spaced heights, and contains approximately 5% of the original data points. We
only compare the result of the anisotropic approach with ‖D3u(v, ·, ·)‖, as the
other anisotropic approaches performed slightly worse.

The different approaches show remarkably similar behaviour as on the syn-
thetic data: The nondirectional approaches generated overly smooth solutions.
AMLE does not reconstruct the mountain peak correctly and introduces arti-
facts along the slopes and ridges. The directional third-order method gives a
clean result and reconstructs most prominent features.

Quantitative evaluation. In order to quantify the performance of the various
methods, we compared the results on the DEM data to the known ground truth.
Since the L2-distance is not necessarily a good measure to judge visual quality,
we also computed the error between the normal fields of the surfaces.

Table 1 shows the performance of the various approaches under varying
smoothness parameter ρ. We found that the relative performance is almost in-

dependent of the choice of ρ, with the R
(3)
0 regularizer always being in the lead
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AMLE ‖D3u(v, ·, ·)‖ (proposed) ground truth

Figure 7. Reconstruction of real-world digital elevation maps. Top row: input
contours, second-order isotropic total variation, third-order isotropic total variation.
Bottom row: AMLE, proposed method using ‖D3u(v, ·, ·)‖, ground truth. AMLE
does not correctly recover the small peak and tends to hallucinate features. The pro-
posed method correctly recovers the mountain tops and ridges (top left corner).

in both performance measures. For this example and all other DEM data that
were tested, we found that setting ρ = 1 is nearly optimal.

To obtain more representative data on the relative performance, we evalua-
ted the methods on a set of details from the NED (Figure 8) that include various
qualitatively different features such as bifurcating and meandering valleys, sharp
ridges, and several styles of mountain peaks. Again we set ρ = 1 for all of the
examples. The results in Table 2 show that on all examples and across all per-

formance measure, the directional R
(3)
1 regularizer worked best, followed by di-

rectional third-order-, directional second-order-, isotropic third-order-, isotropic
second-order regularization, and finally AMLE.

4 Conclusion

In our view the reconstruction of digital elevation maps is a very interesting
application for higher-order regularization, where minor variations in the regu-
larizer can have large effects on the result. In this work we left out most questions
concerning the analysis such as how to choose suitable function spaces and the
existence of solutions and fixed points. All of these seem to be challenging ques-
tions, and we leave them to future work.

From a practical viewpoint, the numerical results are very encouraging, and
suggest that the directional third-order regularizers together with the proposed
method of estimating the directional field v converge rapidly and give excellent
results on synthetic as well as real-world data.

Acknowledgments. The authors would like to thank Andrea Bertozzi and
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Figure 8. Reconstruction of real-world digital elevation maps. Top row: input
contours. Middle row: results using the proposed method with ‖D3u(v, ·, ·)‖. Bottom
row: ground truth.

Table 1. Solution quality for example (a) in Fig. 8, measured in the absolute L2

difference and L2 distance of the normals (in parentheses). The best results for each
method are marked in bold. Even without selecting the optimal smoothness parameter,
good quality solutions can be obtained. The overall best result is achieved with the
third-order anisotropic regularizer R

(3)
1 and ρ = 1 (underlined).

ρ 10−4 10−3 10−2 10−1 100 101 102

Lapl. 144. (11.05) 144. (11.05) 144. (11.05) 144. (11.05) 144. (11.05) 144. (11.05) 144. (11.05)
AMLE 140. (15.58) 140. (15.58) 140. (15.58) 140. (15.58) 140. (15.58) 140. (15.58) 140. (15.58)

TV(3) 15.34 (3.52) 15.34 (3.52) 15.34 (3.52) 15.34 (3.52) 15.34 (3.52) 15.34 (3.52) 15.34 (3.52)

R
(3)
1 9.72 (2.41) 9.73 (2.41) 9.75 (2.40) 9.62 (2.30) 8.55 (2.15) 9.83 (2.68) 15.48 (3.85)

R
(3)
2 11.84 (2.64) 12.11 (2.71) 12.61 (2.68) 13.75 (2.64) 10.88 (2.45) 11.31 (3.21) 18.83 (4.81)

R
(3)
3 10.17 (3.14) 10.58 (3.11) 10.68 (2.93) 17.96 (3.17) 15.14 (3.02) 14.75 (3.88) 28.13 (5.94)

TV(2) 31.07 (4.39) 31.07 (4.39) 31.07 (4.39) 31.07 (4.39) 31.07 (4.39) 31.07 (4.39) 31.07 (4.39)

R
(2)
1 15.82 (2.99) 16.17 (3.01) 17.40 (3.09) 18.67 (3.12) 18.29 (3.35) 18.76 (4.16) 52.13 (7.28)

R
(2)
2 12.06 (3.46) 11.09 (3.33) 14.69 (3.69) 21.35 (4.49) 22.87 (5.47) 30.55 (7.41) 70.46 (11.96)
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