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Abstract. We revisit the Chan-Vese model of image segmentation with
a focus on the encoding with several integer-valued labeling functions.
We relate several representations with varying amount of complexity
and demonstrate the connection to recent relaxations for product sets
and to dual maxflow-based formulations. For some special cases, it can
be shown that it is possible to guarantee binary minimizers. While this
is not true in general, we show how to derive a convex approximation
of the combinatorial problem for more than 4 phases. We also provide
a method to avoid overcounting of boundaries in the original Chan-Vese
model without departing from the efficient product-set representation.
Finally, we derive an algorithm to solve the associated discretized prob-
lem, and demonstrate that it allows to obtain good approximations for
the segmentation problem with various number of regions.1

1 Introduction

In this paper we focus image segmentation formulated as a variational
problem. The general problem we are interested in, is to find a partition
{Ωi}ni=1 of the image domain Ω, by minimizing an energy functional of
the form

min
{Ωi}n

i=1

n∑

i=1

∫

Ωi

fi(I
0(x)) dx + αR({∂Ωi}

n
i=1)

s.t.

n⋃

i=1

Ωi = Ω,
n⋂

i=1

Ωi = ∅. (1)
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Here R({∂Ωi}ni=1) is a regularization term, and I0 is a given input im-
age. A popular choice for the regularizer is the Potts regularizer, which
measures the total length of the region boundaries,

R({∂Ωi}
n
i=1) =

1

2

n∑

i=1

|∂Ωi|. (2)

In order to build up algorithms for solving (1) numerically, one needs
some representation of the regions in terms of functions instead of sub-
sets. Over the last 30 years, several such representations have been pro-
posed, including the level set method [16] and phase field method. Re-
cently, there has been a particular interest in piecewise constant repre-
sentations [12], where each regions is uniquely associated with a value of
some binary or integer constrained functions. A reason for the popular-
ity of this approach, is that very good convex relaxations often can be
derived by relaxing the integrality constraints of the functions [6, 18, 11,
24, 17, 1, 3]. There are in particular three classical ways of representing
multiple regions {Ωi}ni=1 in terms of piecewise constant functions

1. Integer-valued labeling function [12, 13]: φ : Ω 7→ {1, ..., n} such
that φ(x) = i if x ∈ Ωi, i = 1, ..., n.

2. Simplex-constrained vector function [11, 24]: v : Ω 7→ Δn = {v ∈
Rn :

∑n
i=1 vi = 1, vi ∈ {0, 1}, i = 1, ..., n} such that

vi(x) :=

{
1, x ∈ Ωi

0, x /∈ Ωi
, i = 1, . . . , n.

A related variant with a different parametrization of the unit simplex
was proposed in [17].

3. m = log2(n) overlapping binary functions : φ1, ..., φm : Ω 7→ {0, 1}
such that x ∈ Ωi iff φ1(x)...φm(x) is the binary representation of
integer i. This representation was pioneered in a level set framework
in [21] and the resulting optimization problem is often called the
Chan-Vese model. The use of binary functions for the multiphase
CV model in the continuous setting was done in [13, 14, 6]. It was
observed in [6] that it is possible to convex relax these binary models.

For some special problems, convex relaxations exists that have proven
to be exact, meaning that global minimizers of the original non-convex
problems can be obtained from minimizers of the convex relaxations.
This includes in particular problems with two regions [6], the labeling
function representation in case of a regularization term which is convex in
φ [18] and the Chan-Vese model with four regions under some conditions
on the data term [3].

These relaxations have been motivated by the theory of discrete opti-
mization, where it is known that the corresponding discrete optimiza-
tion problems defined over a discrete image domain are submodular and
can be solved efficiently by graph based optimization algorithm such as
max-flow/min-cut. However, for the majority of variational segmenta-
tion problem of interest, including (1) with Potts regularizer (2), the
corresponding discrete optimization problems are non-submodular (and
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actually NP-hard). Convex relaxations have been proposed for such prob-
lems that are not guaranteed to provide exact solutions in advance, but
can yield good approximations in practice.
This paper aims to give an overview of different representations of the
problem (1). In addition to focusing on the three approaches mentioned
above, we propose new representations as combinations of several label-
ing functions and several simplex constrained functions.
Secondly, we derive convex relaxations for the problems based on the
convex envelope of the data fidelity term. As a special case, we obtain
a convex relaxation of the Chan-Vese model with an arbitrary number
of regions. Up until now, global optimization algorithms for this model
have only been available in case of four regions [2, 8, 3]. In contrast to
other relaxations [5] with more than four regions, ours is the tightest
because it is based on the convex envelope of the non-convex data term.
Furthermore, the number of unknowns grow as O(log2(n)) instead of
O(n) in [5]. A simultaneous work [15] appearing in this conference also
derives a convex relaxation of the Chan-Vese model by extending the
max-flow model developed in [3].
The proposed relaxations are closely related to the recent work [20],
which derived a convex relaxation for vector valued labeling problems.
In contrast to [20], our original problems are not vector valued. Instead,
we use a vector representation to significantly reduce the number of un-
knowns. We also derive the relaxation without on an initial simplex con-
strained conversion used in [20].
We derive a set of conditions which can be checked in advance to guar-
antee that a global minimizer is obtained from the relaxations. While in
practice these seem to hold only in very rare cases, our approach can
at least produce good approximations. the best approximations that are
theoretically possible. A convex relaxation for Potts regularizer is a also
derived by building on the vector relaxation and the work [17, 3]. Effi-
cient algorithms are proposed for all the problems based on Augmented
Lagrangian methods.

2 Different representations of the partition as
vector-valued functions

2.1 2m regions with m binary functions

We start by focusing on the representation 3 given in the introduction,
which is the binary version of the level set framework [21]. For each
i ∈ {1, ..., n}, let a1

i a
2
i ...a

m
i denote the binary representation of i or any

permutation of the digits in the binary representation. Define w0(s) := s
and w1(s) := 1 − s and introduce m binary functions φ1, ..., φm : Ω 7→
{0, 1}.
The general model in [21] could then be written in terms of polynomials
in {φi}mi=1 as

min
{φi}m

i=1

∫

Ω

n∑

i=1

m∏

k=1

wak
i
(φk)fi dx + α

m∑

k=1

∫

Ω

|∇φk| (3)
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subject to

φi ∈ B := {φ ∈ BV (Ω) : φ(x) ∈ {0, 1} for a.e. x ∈ Ω}, i = 1, ..., m.
(4)

It is also possible to represent a number of n regions which is not a power
of 2 by choosing m is the small integer such that n < 2m and setting
fi =∞ for the 2m − n number of excess indices i.

2.2 Product space of several labeling functions

A natural extension of the model in the previous section is to represent
the image partition in terms of an integer-valued labeling function φ :
Ω 7→ {0, ..., n − 1} with the understanding that φ(x) = i if and only
if x ∈ Ωi for i = 1, ..., n. It has recently been established that such
problems can be solved exactly if the regularizer is the total variation of
the labeling function R(φ) =

∫
Ω
|∇φ| [9, 18].

This can also be combined with the approach from the previous section,
by representing the partition with several labeling functions (φ1, ..., φm)
taking several integer values, as proposed in a level set framework in [7].
Denote by Li = {0, ..., Ni − 1} the set of feasible values for φi, where Ni

is the number of feasible integer values and define the vector function

φ = (φ1, ..., φm) : Ω → L1 × ...× Lm ⊂ Z
m (5)

For each x ∈ Ω, φ(x) can take
∏m

i=1 Ni different values and thus be used
to represent n =

∏m
i=1 Ni regions. Let {ai}ni=1 denote an enumeration of

all feasible values for φ, i.e., for each i = 1, ..., n,

ai =
(
ai
1 ∙ ∙ ∙ a

i
m

)>
(6)

such that ai
k ∈ Lk for k = 1, ..., m. Region Ωi can be encoded as

Ωi = {x ∈ Ω s.t. φ(x) = ai}, i = 1, ..., n (7)

However, this encoding is not unique, as the enumeration {ai}ni=1 can
be reordered in any way. There are n! such reordeings and they can be
formulated generally using a permutation matrix P as follows

[a1...an]← [a1...an] ∙ P (8)

The choice of permutation may have an effect on the quality of the
relaxation. For instance [3] showed that a particular permutation of the
four region model was crucial for producing exact global minimizers of
the original problem. By introducing a function f : L1×...×Lm×Ω 7→ R,

f(φ(x), x) =

{
fi(x), if φ(x) = ai, i = 1, ..., n
+∞, otherwise,

(9)

we can define the regularized energy in terms of φ,

min
φ

∫

Ω

f(φ(x), x) dx + α

m∑

i=1

∫

Ω

|∇φi| (10)

In case N1 = ... = Nm = 2, the model (10) reduces to the Chan-Vese
model (3). Note that due to the separable form of the regularizer, some
boundaries will be counted more than once.
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2.3 Product space of several simplex constrained
functions

A third way to represent the regions is in terms of several simplex con-
strained vector functions: let v = (v1, ..., vm) : Ω 7→ RN1 × ...×RNm be
a set of unit vector functions which satisfy

Ni∑

k=1

vi
k(x) = 1, vi

k(x) ∈ {0, 1} , k = 1, ..., Ni ∀x ∈ Ω (11)

The function v with the above constraint can represent n =
∏m

i=1 Ni re-
gions. For every k1 ∈ {1, ..., N1}, ..., km ∈ {1, ..., Nm}, let i(k1, ..., km) =
k1 +

∑m
j=2(

∏j
i=1 Ni)kj be the corresponding index, then each region can

be described in terms of v by

Ωi(k1,...,km) = {x ∈ Ω : v1
k1(x) = ... = vm

km
(x) = 1} (12)

In order to encode the data term we define

f(v(x), x) =

{
fi(k1,...,km)(x), if v1

( x) = ek1 , ..., vm
( x) = ekm ,

+∞, otherwise.
(13)

The general segmentation model can then be formulated as

min
v∈B

∫

Ω

f(v(x), x) + α
m∑

i=1

Ni∑

ki=1

∫

Ω

|∇vi
ki
|. (14)

An advantage of this representation compared to (10) is that the regu-
larization term of (14) more closely resembles the Potts regularization
term (2), and in fact exactly represents it for boundaries where only one
of the vi changes. For instance, if m = 2, the boundaries will be counted
at most twice, with the majority being counted once.

3 Convex relaxations based on the convex
envelope

In this section, we derive convex approximations for the models intro-
duced in Sect. 2 based on their convex envelopes, which are defined as
the largest convex function majorized by a given function and can under
very general conditions be computed by computing the Legendre-Fenchel
biconjugate [19].
This process ensures that the convexified energy is close to the original
function. In some cases, minimizers of the original problem are also mini-
mizers of the convex envelope. Conditions which guarantee this property
in advance are derived in Sect. 4. In [20], a convex relaxation was pro-
posed for vector valued labeling problems of the form (10) with arbitrary
data terms. Our work is an adaptation of [20] with a few distinctions.
The paper [20] focused on integer-constrained vector labeling, but first
converted the problem to a simplex-constrained formulation and derived
the convex relaxation based on this formulation. In contrast, we derive
the convex envelope directly based on the integer labeling formulation,
which leads to a new convex problem with fewer unknowns and a novel
integer thresholding step.
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3.1 Product space of several labeling functions

The energy functional (10) is composed of a sum of a non-convex data
term and a convex regularizer. We ignore the regularization term in the
following derivations, since it is already convex. Since deriving the full
convex envelope is in general intractable, in the following we focus on
deriving the convex envelope pointwise at each x ∈ Ω, for f defined as
in (9):

f∗(p(x), x) = sup
u(x)∈Rm

{( m∑

i=1

pi(x)ui(x)
)
− f(u(x), x)

}

= max
u(x)∈{ai}n

i=1

{( m∑

i=1

pi(x)ui(x)
)
− f(u(x), x)

}

The biconjugate is

f∗∗(φ(x), x) = sup
p(x)∈Rm

{
m∑

i=1

φi(x)pi(x)− f∗(p(x), x)}

= sup
p(x)∈Rm

{
m∑

i=1

φipi(x) + min
u(x)∈{ai}n

i=1

{
f(u(x), x)−

m∑

i=1

pi(x)ui(x) }}

= sup
p(x)∈Rm,p0(x)∈R

m∑

i=1

φi(x)pi(x) + p0(x) (15)

s.t. p0(x) ≤ −
n∑

i=1

ui(x)pi(x) + f(u(x), x) , ∀u(x) ∈ {ai}
n
i=1.

Note that f∗∗(φ(x), x) = +∞ if φ is not in the convex hull of the points,
conv{a1, ..., an}: if not, the function f∗∗+δconv{a1,...,an} is strictly greater
that f∗∗ but still majorized by f , which contradicts the maximality of
f∗∗ as the convex hull of f . The overall problem with regularization we
wish to solve is therefore

min
φ∈BV (Ω)

sup
p∈L2(Ω)m+1

∫

Ω

p0(x) +

m∑

i=1

φi(x)pi(x) dx + α

m∑

i=1

∫

Ω

|∇φi| (16)

s.t. p0(x) +

n∑

i=1

ui(x)pi(x) ≤ f(u(x), x) , ∀u(x) ∈ {ai}ni=1, ∀x ∈ Ω.

We want an integral solution φ1, ..., φm to the minimization problem
(16). However, it cannot in general be expected that the solution is inte-
gral at every point. Therefore, we apply a thresholding procedure with
parameter t ∈ (0, 1] as follows

(φi)t(x) =

{
bφic, if φi(x) < bφi(x)c+ t
dφie, else,

i = 1, ..., m (17)

where b∙c and d∙e are the floor and ceiling functions respectively. If the
constraint set is binary, i.e. N1 = ... = Nm = 2, this corresponds to the
standard thresholding procedure in [6].
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3.2 Product space of several simplex constrained
functions

In the same way, one can derive the envelope relaxation of the model (14).
We start by defining the vector p = (p1, ..., pm) such that pk ∈ RNk .
Computing the envelope pointwise for each x ∈ Ω and ignoring the
regularization term, one ends up with

sup
{{pk

i (x)}
Nk
i=1}

m
k=1

m∑

k=1

Nk∑

i=1

pk
i (x)vk

i (x) (18)

subject to

Nk∑

i=1

pk
ak

i
(x) ≤ fi(x), k = 1, .., m, (19)

Nk∑

i=1

vk
i (x) = 1, k = k, ..., m, (20)

vk
i (x) ∈ [0, 1], i = 1, ..., Nk, k = 1, ..., m. (21)

which is also the pointwise relaxation of the data term for vector la-
beling problems that was proposed in [20]. The objective function (18)
with constraints (19)-(21) also arises if one computes the standard LP-
relaxation (review: [22]) of the combinatorial data term (14). The model
(14) can therefore be relaxed as

sup
{{pk

i (x)}
Nk
i=1}

m
k=1

m∑

k=1

Nk∑

i=1

∫

Ω

pk
i (x)vk

i (x) dx + α

m∑

i=1

Ni∑

ki=1

∫

Ω

|∇vi
ki
| dx (22)

subject to (19)–(21) for all x ∈ Ω. Although we cannot expect a binary
solution in general, an approximate partition can be obtained through
the thresholding step

vi
k(x)←

{
1, if i = arg maxj vj

k(x)
0, otherwise.

, i = 1, . . . , n

Note that the Chan-Vese model can be obtained as a special case by
substituting vk

1 = 1 − φk and vk
2 = φk. The approach of Bae-Yuan-Tai

[1] is also a special case of this general model where global minimization
can be guaranteed under some moderate conditions.

4 Special cases which guarantee global
minimizers

We show that under some conditions on the data term of (3), exact
solutions will be produced by the relaxation (16). In particular, this is
true if the data term is submodular. Observe that the energy in (3)
pointwise consists of interactions between m binary variables. An energy
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function of two binary variables E(φ1, φ2) is said to be submodular if [4,
10]

E(1, 0) + E(0, 1) ≤ E(1, 1) + E(0, 0). (23)

A higher-order function E(x1, x2, x3) of 3 binary variables is said to be
submodular if the projections onto all functions of two binary variables
are submodular [4, 10], i.e., if

E(b, x2, x3), E(x1, b, x3), E(x1, x2, b) (24)

are submodular for every b ∈ {0, 1}.
In [3], a different relaxation was proposed for the model (3) with four
regions, which was shown to be exact in case of a submodular data term.
Specifically, it was shown (3) could be reformulated as

min
φ1,φ2∈[0,1]

α

∫

Ω

|∇φ1|+ α

∫

Ω

|∇φ2| (25)

+

∫

Ω

(1− φ1(x))C(x) + (1− φ2(x))D(x) + φ1(x)A(x) + φ2(x)B(x) dx

+

∫

Ω

max{φ1(x)− φ2(x), 0}E(x)−min{φ1(x)− φ2(x), 0}F (x) dx

where A, ..., F satisfy the linear system of equations






A(x) + B(x) = f2(x) + σ(x)
C(x) + D(x) = f3(x) + σ(x)
A(x) + E(x) + D(x) = f1(x) + σ(x)
B(x) + F (x) + C(x) = f4(x) + σ(x)

. (26)

where σ is an arbitrary function. Consequently it was proved that an
exact global minimizer could be obtained by thresholding any solution
of the convex problem.
In the following, we show that the convex envelope relaxation (16) with
N1 = N2 = 2 is equivalent to the formulation (25) in case the energy is
submodular. In [3] it was observed that one possible solution of (26) is

A = max{f2 − f4, 0}, B = max{f4 − f3, 0}, C = max{f4 − f2, 0},

D = max{f3 − f4, 0}, E = f1 + f4 − f2 − f3. (27)

Substituting this into the integrand of the data term of (25) yields

φ1(f2 − f4) + φ2(f4 − f3) + (f1 + f4 − f2 − f3) max{φ1 − φ2, 0}. (28)

for the data term. On the other hand, problem (15) is a linear program
with in this case effectively 3 unknowns (note that here we use a0 =
(1, 0), a1 = (1, 1), a2 = (0, 0), a3 = (0, 1), so that the vector (−1,−1, 1, 1)
is in the null-space of the constraint matrix for p). Any solutions must
be on corners of the constraint set, which are characterized by 3 of the
constraints holding with equality, and can be computed as

p ∈ {(f1 − f3, f2 − f1), (f2 − f4, f4 − f3), (29)

(f2 − f4, f2 − f1), (f1 − f3, f4 − f3)}. (30)
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Checking these possible solutions against the remaining constraint yields
that the first two solutions are feasible and the last two solutions are
infeasible iff f4 + f1 − f2 − f3 > 0, which is exactly the submodularity
condition. Substituting these two solutions into (15) yields a compact
expression for f∗∗,

max{φ1(f1−f3)+φ2(f2−f1)+f3, φ
1(f2−f4)+φ2(f4−f3)+f3}, (31)

which can be shown to be equivalent to (28), and consequently estab-
lished the equivalence of (16) and (25) for submodular data.
It can also be shown that if the 8 region model is submodular, the relax-
ation satisfies the coarea formula and can therefore be thresholded while
preserving the energy. More details will be provided in an extended ver-
sion of this paper.

5 Potts regularization term

The model (1) does not correspond exactly to the Potts regularizer (2)
because some of the region boundaries are counted multiple times. In the
following, we present a way to derive a convex relaxation of the Potts
regularization term by using the above representation as binary functions
by introducing additional constraints on the dual variables.
This relaxation is inspired by the work of [17], which derived a convex
relaxation of Potts model based on the labeling function representation
of the partition. An important distinction is that the number of dual
constraints in our relaxation grow as O(log2(n)2), whereas the number
of constraints in [17] grow as O(n2). The relaxation was proposed for the
case of 4 regions in [3], our contribution here is the generalization to 2m

regions.
The model (16) can be written with dual variables as

min
φ∈BV (Ω)

sup
p∈L2(Ω)m+1,qi∈Cα

∫

Ω

p0(x) +
m∑

i=1

φi(x)pi(x) + φi(x) div qi(x) dx

(32)

s.t. p0(x) +

n∑

i=1

ui(x)pi(x) ≤ f(u(x), x) , ∀u(x) ∈ {ai}
n
i=1, ∀x ∈ Ω

where the constraint set Cα is defined as

Cα = {q ∈ C∞(Ω)dim(Ω) : |q|∞ ≤ α}. (33)

where |q|∞ = supx∈Ω |q(x)|2. We are now interested in the binary case,
i.e. N1 = ... = Nm = 2. The convex relaxation for Potts model consists
of the optimization problem (32) with the extra dual constraint set

(q1, ..., qm) ∈ CP (34)

=
{
{qi}mi=1 ∈ Cα : |qi−qj |∞ ≤ α, |qi+qj |∞ ≤ α ; ∀ i < j ∈ {1, ..., m}

}
.

If the functions φ1, ..., φm are binary, one can easily check that the last
term of (32) corresponds to the Potts regularizer (2). The constraint set
(34) contains (log2(n))2 inequalities.
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6 Algorithms

We derive algorithms for the problems (16) and (22). In this section,
(ai)k denotes component i of vector a at iteration k, and ak denotes
vector a at iteration k.
Define the set

C1
p(x) = {p(x) ∈ Rm, p0(x) ∈ R :

p0(x) +
m∑

j=1

uj(x)pj(x) ≤ f(u(x), x) , ∀u(x) ∈ {ai}
n
i=1}

Applying the dual formulation of total variation (32) and rearranging
the terms, the model (16) can be reformulated as

min
φ∈BV (Ω)

sup
p∈L2(Ω)m+1,q∈Cα

∫

Ω

p0(x) +
m∑

i=1

φi(x)(pi(x) + div qi(x)) dx

s.t. p0(x) +
n∑

i=1

ui(x)pi(x) ≤ f(u(x), x) , ∀u(x) ∈ {ai}ni=1, ∀x ∈ Ω

Observe that φi can be interpreted as an unconstrained Lagrange multi-
plier for the constraint pi + div qi = 0. Consequently, it possible to form
the augmented Lagrangian functional

L(p, q, φ) =

∫

Ω

p0 +
m∑

i=1

φi(pi + div qi) dx−
c

2

m∑

i=1

||pi + div qi||2 (35)

and solve the problem (16) by the augmented Lagrangian method as
follows: initialize the starting points p0, q0, φ0, and iterate, for k = 0, 1, ...,

(p)k+1 = arg max
(p)∈C1

p

L(p, qk, φk),

(qi)k+1 = arg max
qi

L(pk+1, qi, φk), i = 1, ..., m

(φi)k+1 =(φi)k − c((pi)k+1 + div(qi)k+1), i = 1, ..., m

The first subproblem can be solved approximately as

(p)k+1 = ΠC1
p
(pk + δp

∂L

∂p
(pk, qk, φk))

where ∂L
∂p0

(pk, qk, φk) = 1 and ∂L
∂pi

(pk, qk, φk) = φik
− c(pk

i −div qik
), i =

1, ..., m. The projection ΠC1
p

onto Cp cannot be computed in closed form,

but can be computed iteratively by Dykstra’s algorithm. The subproblem
involving q can be solved iteratively by computing an ascent step followed
by a simple projection onto Cα. In case of a Potts regularizer, we use
Dykstra’s algorithm to project onto q onto its constraint set as in [17, 3].
Note that (35) resembles a max-flow problem where pi +div qi = 0 is the
flow conservation constraint. The algorithm above is in the same spirit
as recently proposed continuous max-flow algoirthms [23, 3] which have
demonstrated to be very efficient in practice.
A similar Augmented Lagrangian algorithm can also be derived for (22).
To save space, we skip the details here.
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7 Experiments

In the experiments we have chosen the data term

fi(x) = |I(x)− ci|
β ∀x ∈ Ω, i = 1, ..., n (36)

with β = 2. The optimal parameters ci, i = 1, ..., n are calculated by
iteratively minimizing for the regions and ci until convergence. In Fig-
ure 2(f) they are chosen uniformly between 0 and 1 without subsequent
updating. We use the relaxation (16) to find partition into various num-
ber of regions. Results with 8 regions, represented by 3 binary functions
(N1 = N2 = N3 = 2), are depicted in Figure 2 and 4. Results with 6
regions, which was represented by one binary function and one function
taking 3 integer values (N1 = 2, N2 = 3), are shown in Figure 3 (a)
and (b). Results with 16 regions in Figure 3 (c), represented by 4 binary
functions (N1 = ... = N4 = 2) . Observe that the solutions φ1, ..., φm

are binary/integer at most points. In order to produce a fully binary
solution we threshold according to (17). To visualize the results, we have
plotted φ1, ..., φ3 before thresholding . The results can also be depicted
in a single image by the construction I = ci in Ωi, i = 1, ..., n. We also
depict I before thresholding, by using the polynomial in (3) to represent
the regions in a soft manner before thresholding.
In the experiments with 8 regions, it is interesting to ask whether the
submodularity conditions (24) can be satisfied at every point for a per-
mutation of the labels, which would guarantee that a global minimizer
can be obtained after thresholding. Unfortunately, this was not the case
for any of the possible permutations (8) of the representation, in contrast
to the 4-region case, where this condition often holds [3].
This means that in most cases it is not possible to guarantee that a
global minimizer will be obtained a priori. However the results seem to
be good in practice and are in any case the best approximations that can
be obtained using a local relaxation, i.e., a relaxation of the integrand.

(a) (b)

Fig. 1. Test images
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(a) (b) (c)

(d) (e) (f)

Fig. 2. 8 regions (N1 = N2 = N3 = 2), α = 0, 1: (a)-(c) φ1, ..., φ3 before threshold, (d)
I before threshold, (e) I after threshold, (f) Potts relaxation after threshold

(a) (b) (c)

Fig. 3. (a) - (b) 6 regions (N1 = 2, N2 = 3), α = 0, 1, (a) before threshold, (b) after
threshold. (c) 16 regions (N1 = ... = N4 = 2)

(a) (b) (c) (d)

Fig. 4. 8 regions, α = 0.1. (a) Thresholded solution, (b)-(d) φ1, ..., φ3 before threshold
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8 Conclusions

We have summarized and generalized different representations of the re-
gions in variational image segmentation models in terms of vector func-
tions. Convex relaxations have been developed based on the convex en-
velope and connected to recent relaxations for product sets and to dual
maxflow-based formulations. The relaxations contain a significantly lower
number of unknowns than there are regions and are the tightest convex
approximations that exist for the given set of problems. Efficient algo-
rithms have been developed and experiments have demonstrated that
good approximations for the segmentation problems can be obtained in
practice.
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