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Abstract

We introduce a variational approach to image segmentation based on sparse cov-
erings of image domains by shape templates. The objective function combines a data
term that achieves robustness by tolerating overlapping templates with a regularizer
enforcing sparsity. A suitable convex relaxation leads to the variational approach that
is amenable to large-scale convex programming.

Our approach takes implicitly into account prior knowledge about the shape of
objects and their parts, without resorting to combinatorially difficult problems of
variational inference. We illustrate our approach by numerical examples and indicate
how prior knowledge acquisition may be achieved by learning from examples.

1 Introduction

Approaches to image segmentation require additional information, besides given image
data, to be able to decompose an image into meaningful parts. Such information is typ-
ically provided by a model of object appearance that suitably constrains the space of
image segmentations. The unknown subset of the image domain covered by one or sev-
eral objects that is to be segmented, is called foreground, and its complement is called
background. Models of object appearance represent both the foreground region in terms
of features (color, texture) that are characteristic for an object class of interest, and the
delimiting contour separating fore- and background, i.e. object shape. In this paper, we
study a variational approach to image segmentation that implicitly takes into account
shape prior knowledge in terms of a dictionary of shape templates.

Variational approaches to image segmentation that utilize shape prior knowledge in-
clude statistical models of parametrized contours [17, 14], level-set based segmentation
[16, 15, 11], and discrete combinatorial approaches in terms of Markov Random Field
(MRF) models [18, 5]. A common property of these approaches is the inherent nonconvex-
ity introduced by the respective shape prior model. Therefore, and in view of recent convex
formulations of the basic fore-/background separation problem [10] and its extension to
the non-binary case [19, 9, 20], we focus in this paper on a convex variational approach to
foreground/background separation based on shape prior knowledge.

Two major aspects distinguish our approach from prior work. Firstly, rather than
representing partitions of the image domain pixelwise by a corresponding indicator vector,
we aim at separating fore- and background by covering the foreground with a collection of
shape templates. While this seems to amount to replace standard binary basis functions by
another set of basis functions, this is not quite true because shape templates may overlap
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Figure 1: Separating fishes from the background and from each other by convex optimiza-
tion in terms of a sparse covering of the image by shape templates. The dictionary of shape
templates was generated from a single template by translation, rotation and scaling. The
approach presented in this work copes with a significant amount of overlapping templates
and occlusion.

and their addition does not yield an indicator function. Secondly, shape regularization
by the common length penalty term [21] through a total variation prior in the convex
formulation [10] is replaced by enforcing sparsity instead, i.e. by penalizing the number of
shape templates required to “explain” given image data – see Figure 1.

Our work is also motivated by the basis pursuit framework [12] and the striking perfor-
mance of “`1-decoding” by convex programming in underdetermined compressed sensing
scenarios [8, 13]. The need for (approximate) invariance of image segmentation and object
recognition necessitates to cope with underdetermined settings, and although our dictio-
naries do not satisfy corresponding strong mathematical assumptions like the Restricted
Isometry Property, our numerical experiments reveal promising performance and a signif-
icant potential for real-world applications.

Related work in the field of computer vision includes the work of Borenstein and
Ullman on segmentation using image fragments [6, 7]. Unlike shape templates, image
fragments model not only shape but also the image intensity function and image features
for a particular object class of interest, like “horse”. Accordingly, the focus of this work is
on corresponding image features, whereas variational inference is based on a MRF model,
and simplifications are made to keep it computationally tractable. By contrast, in the
present paper, we focus on the variational model from the optimization point of view and
largely ignore the issue of feature extraction, keeping in mind that recent convex variational
formulations [19, 9, 20] do not impose any restrictions on the choice of image features.

Finally, we point out further recent work [1, 27] on dictionary based image processing.
Though the scope of this work is confined to image denoising without semantical interpre-
tation like image segmentation and object recognition, recent extensions towards learning
of task-specific dictionaries [26] exhibit a general and highly relevant research direction.
We present few numerical experiments indicating that adopting and properly modifying
this idea for shape template learning is promising indeed.

Organization. Our paper is structured as follows. We present our variational approach
in Section 2. The primary issue here is to deal with overlapping templates and object
occlusion. In Section 3, we derive a sufficiently tight convex relaxation that is amenable
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to large-scale optimization. Two such approaches are examined in Section 4 with respect
to robustness and speed of convergence to a global optimum. We empirically evaluate and
validate our approach in Section 5 with a range of numerical examples and briefly address
the issue of knowledge acquisition by learning from examples.

Notation. For the reader’s convenience, we briefly summarize the notations used in this
paper. Matrices and vectors are denoted by upper-case and lower-case letters, respectively.
We refer to the k-th row of a matrix A by Ak,·. We denote by e the vector consisting of ones,
e = (1, . . . , 1)>. The Hadamard product between two equally-sized vectors or matrices
A,B is given by A�B. Additionally, we define A�x := A�(ex>) and x�A := (xe>)�A.
For a matrix A ∈ Rm×n (possibly a vector if m = 1), vecmax(A) denotes the vector v ∈ Rm
such that vk = max{Ak,1, . . . , Ak,n}. Finally, C,D denote two closed convex sets, where
the corresponding (Euclidean) orthogonal projections are given by ΠC ,ΠD.

2 Sparse Template-Based Shape Representation

In the sparse representation framework, images (or generally signals) f ∈ Rm are assumed
to be additively composed of a small number of basis functions drawn from an overcomplete
basis of n functions, A = (a1, . . . , an) ∈ Rm×n, i.e.

f = Ax, x ∈ Rn , (1)

and x is assumed to be sparse in the sense that it contains only a few nonzero entries. Find-
ing the set of basis functions for a given image is then achieved by solving the minimum-
norm solution optimization problem

min
x∈Rn

‖x‖0 subject to Ax = f , (2)

where ‖x‖0 refers to the `0 pseudo-norm, i.e. the number of non-zero entries of x.
While solving (2) directly is a difficult combinatorial problem unless A comprises an

orthogonal basis, it can be shown that under some circumstances one may replace ‖ · ‖0 by
‖ · ‖1 [8]. Moreover, to account for noise the constraint is in practice commonly enforced
approximately by a penalty term, resulting in the well-known problem

min
x∈Rn

{
µ‖x‖1 + ‖Ax− f‖22

}
. (3)

In the following, we will examine how this approach can be extended to sparse shape
representation. The basic idea is to transfer the methods from the image domain to the
shape domain via the indicator function representation. Therefore we assume that the
basis functions are indicator functions of some prototypical shapes, i.e. ai ∈ {0, 1}m, and
f ∈ {0, 1}m is the characteristic function of a shape that is the union of several of the
basis shapes.

From these definitions it becomes clear that using (3) to recover the basis shapes is
bound to fail: current sparse representation methods are based on the assumption that the
basis functions overlay in an additive fashion. In contrast, in the shape context, the basis
functions are in a sense “opaque”, as the “union of basis shapes” principle dictates that
they do not add up in regions of intersection, but rather stay at 1. This desired behavior
is illustrated in Fig. 2.

We therefore replace the additivity assumption (1) by the concept

fk = max{Ak,1x1, . . . , Ak,nxn}, x ∈ {0, 1}n , (4)
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Figure 2: Illustration of the “union of basis shapes” principle. Left: Ordinary addition of
basis functions yields inappropriate representation of the regions of intersection. Right:
Desired behavior of overlapping shapes. The goal of this work is to approximately achieve
this property by a convex optimization approach.

where the maximum has to be taken on each component separately. Thus

f = vecmax(A� x) , (5)

with “vecmax” extended to apply to each row of A� x separately.
The overall problem then reads

min
x∈{0,1}n

{
µ‖x‖1 + ‖ vecmax(A� x)− f‖22

}
. (6)

Unfortunately, even after relaxing to x ∈ [0, 1]n, this problem is no longer convex. However,
it will turn out below that by switching to an appropriate convex relaxation, good solutions
can be obtained by finding the global optimum of a convex problem.

3 Convex Envelope Local Relaxation

First note that we are dealing exclusively with indicator functions. Hence, f ∈ {0, 1}m
and

‖ vecmax(A� x)− f‖22 =
∑
k

(
vecmax(Ak,· � x)− fk

)2
(7)

=
∑
k,fk=1

(
1− vecmax(Ak,· � x)

)
+
∑
k,fk=0

vecmax(Ak,· � x) (8)

=
∑
k

{
fk
(
1− vecmax(Ak,· � x)

)︸ ︷︷ ︸
=:g(Ak,·�x)

+(1− fk) vecmax(Ak,· � x)︸ ︷︷ ︸
=:h(Ak,·�x)

}
. (9)

Still, as we are dealing exclusively with indicator functions, g and h are defined solely
on binary vectors in {0, 1}n (cf. the black dots in Fig. 3 for the two-component case).
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Figure 3: Values of the distance function (black dots) depicting the desired behavior
for non-zero and zero signal entries. Using convex envelopes for both foreground and
background, proper relaxations can be obtained. Left: relaxation for g, i.e. at locations
where fk 6= 0 (foreground). Right: relaxation for h, i.e. at locations where fk = 0
(background).

The optimal convex extension of (9) to [0, 1]n is given by its convex envelope, that is the
largest closed convex function majorized by f . The maximality of the convex envelope
ensures that a minimal amount of artificial non-binary solutions are introduced into the
problem. However, finding the global convex envelope is generally a hard problem. Instead,
we construct an approximation by constructing the envelope over the individual terms
involving g and h.

To do this, we note that for any (convex or non-convex) function f , the (Legendre-
Fenchel) biconjugate f∗∗ is a convex function and its epigraph is the convex closure (i.e.
the closure of the convex hull) of the epigraph of f , epi f∗∗ = cl(epi f). Moreover, f∗∗ is
the convex envelope of f . Thus it remains to compute g∗∗ and h∗∗ in order to approximate
the convex envelope of the objective (9).

Proposition 3.1. Let

g(p) =


1, p = 0,
0, p ∈ {0, 1}n, p 6= 0,
+∞, p 6∈ {0, 1}n,

h(p) =


0, p = 0,
1, p ∈ {0, 1}n, p 6= 0,
+∞, p 6∈ {0, 1}n.

(10)

Then the convex envelopes are given by

g∗∗(p) =

{
max{0, 1− e>p}, p ∈ [0, 1]n,
+∞, otherwise,

h∗∗(p) =

{
vecmax(p), p ∈ [0, 1]n,
+∞, otherwise.

(11)

Proof. See Appendix.

The full local relaxation of problem (6) is thus

min
x∈{0,1}n

{
µ‖x‖1 +

∑
k

(fkg
∗∗(Ak,· � x) + (1− fk)h∗∗(Ak,· � x))

}
. (12)

The function h∗∗ is considerable more difficult to handle numerically than g∗∗, as it requires
to introduce a large amount of KKT multipliers resp. dual variables. However, experiments
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showed that very good results can be obtained by replacing h∗∗(p) with the upper bound
e>p, yielding our final relaxation

min
x∈{0,1}n

{
µ‖x‖1 +

∑
k

(fk max{0, 1− 〈Ak,·, x〉}+ (1− fk)〈Ak,·, x〉)

}
. (13)

Problem (13) now allows to compute good approximate solutions to the combinatorial
problem (6). However, it remains to cope with the large problem size and nonsmoothness
of the objective.

3.1 Saddle-Point Formulation

In order to handle the nonsmoothness of (13), we turn to considering the optimization
problem as bilinear saddle-point problem of the form

min
x∈C

max
v∈D
{〈d, x〉+ 〈v, Lx〉 − 〈b, v〉} . (14)

By explicitly introducing the dual variables v, this allows to naturally handle nonsmooth
objectives as commonly done in image denoising and segmentation [28, 23, 19].

Using the notation introduced above, we can rewrite the “max” term in (13) as
maxvk∈[0,1](vk(1 − Ak,·x)). Thus, the optimization problem (13) can be represented ac-

cording to (14) by setting C = [0, 1]n, D = [0, 1]m, d = A>(1 − f) + µe, b = −f and
L = −f �A, respectively.

The primal and dual objectives are consequently given by

fp(x) := max
v∈D

g (x, v) and fd(v) := min
x∈C

g(x, v) , (15)

respectively. The dual problem then consists of maximizing fd(v) over D. As C and D are
bounded, it follows from [25, Cor. 37.6.2] that a saddle point (x∗, v∗) of g exists. With
[25, Lemma 36.2], this implies strong duality, i.e.

min
x∈C

fp(x) = fp(x
∗) = g(x∗, v∗) = fd(v

∗) = max
v∈D

fd(v) . (16)

In our case, C,D encode simple box-constraints, which allows to compute fd as well as
the orthogonal projections ΠC and ΠD efficiently, a fact that will prove important in the
algorithmic part.

4 Optimization

To optimize the saddle point formulation (14), we have to take into account the large-scale
nature and the inherent nonsmoothness of the objective. While interior-point solvers are
known to be very fast for small to medium sized problems, they are not particularly well-
suited for massively parallel computation, such as on the upcoming GPU platforms, due
to the expensive inner Newton iterations.

Although L ∈ Rm×n with n � m is sparse in general, columns are usually non-
orthogonal, i.e. the sets of the nonzero entries’ indices overlap significantly. Thus, L>L
might be dense such that Newton steps are potentially very expensive with respect to
space and time.

We will instead focus on first order methods involving only evaluations of L and L>

and projections on C and D, as these operations can be highly parallelized due to their
local nature. To this end, we investigate a fast primal-dual method based on [23] as well
as Nesterov’s multi-step method [22].
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Algorithm 1 Fast Primal-Dual Method

1: Choose x(0) ∈ C, v(0) ∈ D.
2: Choose τp > 0, τd > 0, N ∈ N.
3: y(0) ← x(0)

4: for k = 0, . . . , N − 1 do
5: v(k+1) ← ΠD

(
v(k) + τd

(
Lx(k) − b

))
.

6: y(k+1) ← ΠC
(
y(k) − τp

(
L>v(k+1) + d

))
.

7: x(k+1) ← 2y(k+1) − y(k).
8: end for

4.1 Fast Primal-Dual Method

One of the most straightforward approaches for optimizing (14) is to fix small primal
and dual step sizes τp resp. τd, and alternatingly apply projected gradient descent resp.
ascent on the primal resp. dual variables, i.e. an Arrow-Hurwicz approach [2]. However,
it seems nontrivial to derive sufficient conditions for convergence. Because of this, in [23]
the authors propose the Fast Primal-Dual (FPD) method, a variant of the Popov’s saddle
point method [24]. The algorithm is summarized in Alg. 1.

Due to the explicit steps involved, there is an upper bound condition on the step size
to assure convergence, which can be shown to be τpτd < 1/‖L‖2 [23]. As in our case,
L is explicitly given and evaluations of L and L> can be computed efficiently, we use
the Power Iteration method to extract the maximal eigenvalue of L>L. Additionally, as
both the primal and dual iterates are always feasible, a stopping criterion based on the
primal-dual gap as outlined in Sect. 3.1 can be employed.

4.2 Nesterov Method

Next, we will provide a short summary of the application of Nesterov’s multi-step method
[22] to the saddle point problem (14) as proposed in context of image labeling in [19]. In
contrast to the FPD method, the nonsmoothness is treated by first applying a smoothing
step and then using a smooth constrained optimization method. The amount of smoothing
is balanced in such a way that the overall number of iterations to produce a solution with
a specific accuracy is minimized.

The algorithm has a theoretical worst-case complexity of O(1/ε) for finding an ε-
optimal solution, and has been shown to give accurate results for denoising [3] and general
`1-norm based problems [4]. Besides the desired accuracy, no other parameters have to be
provided. The complete algorithm for our saddle point formulation is shown in Alg. 2.

The only expensive operations are the projections ΠC and ΠD, which are efficiently
computable in our scenario. The algorithm converges in any case and provides explicit
suboptimality bounds:

Proposition 4.1. In Alg. 2, iterates x(k),v(k) are primal resp. dual feasible, i.e. x(k) ∈ C
and v(k) ∈ D. Moreover, for any solution x∗ of the relaxed problem (14), the relation

fp(x
(N))− fp(x∗) 6 fp(x

(N))− fd(v(N)) 6
2r1r2‖L‖
(N + 1)

(17)

holds for the the final iterates x(N),v(N), where N denotes the total number of iterations,
and c1, c2, r1, r2 refer the centers and radii of balls enclosing C resp. D, i.e. C ⊆ Br1(c1)
and D ⊆ Br2(c2).
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Algorithm 2 Nesterov’s Multi-Step Method

1: Let c1 ∈ C, c2 ∈ D and r1, r2 ∈ R s.t. C ⊆ Br1(c1) and D ⊆ Br2(c2).
2: Choose x(0) ∈ C and N ∈ N.
3: Let µ← 2‖L‖

N+1
r1
r2

.

4: Set g(−1) = 0, w(−1) = 0, y(0) = x(0).
5: for k = 0, . . . , N do

6: v ← ΠD

(
c2 + 1

µ

(
Ly(k) − b

))
.

7: w(k) ← w(k−1) + (k + 1)v.
8: v(k) ← 2

(k+1)(k+2)w
(k).

9: g ← d+ L>v.
10: g(k) ← g(k−1) + k+1

2 g.

11: x(k) ← ΠC

(
y(k) − µ

‖L‖2 g
)

.

12: z(k) ← ΠC

(
c1 − µ

‖L‖2 g
(k)
)

.

13: y(k+1) ← 2
k+3z

(k) +
(

1− 2
k+3

)
x(k).

14: end for

Proof. Apply [22, Thm. 3] with f̂(x) = 〈x, d〉, A = L, φ̂(v) = 〈b, v〉, d1(x) := 1
2‖x− c1‖

2,
d2(v) := 1

2‖v − c2‖
2, D1 = 1

2r
2
1, D2 = 1

2r
2
2, σ1 = σ2 = 1, M = 0.

Corollary 4.2. For given ε > 0, applying Alg. 2 with

N =

⌈
2r1r2‖L‖

ε
− 1

⌉
(18)

yields an ε-optimal solution of (14), i.e. fp(x
(N))− fp(x∗) 6 ε.

5 Numerical Evaluation

To empirically evaluate the proposed formulation along with the presented optimization
algorithms, we implemented the “fast primal-dual” (FPD) algorithm [23] as well as Nes-
terov’s multi-step method [22] using Matlab research code, along with optimized C coding
for the evaluation of the matrix products, and applied the framework to different applica-
tions.

5.1 Template Based Segmentation

Run-time Comparison To compare the performance of the algorithms presented above,
we considered the academic example visualized in Fig. 4. The image consists of a centered
circle that has considerable overlap with four equally sized squares. We supplemented
the image with noise to simulate real-world scenarios as well as imperfect features and
local classification. As basis dictionary we used squares and circle templates shifted to all
possible image locations.

Running the FPD algorithm and Nesterov’s multi-step method reveals that the former
typically provides faster convergence to the global optimizer. A direct comparison of both
approaches is given in the lower panel of Fig. 4.

Although there is no explicit termination criteria for FPD compared to the worst case
bound of Nesterov’s approach, in the following we use FPD to infer the optimal template
configuration. The primal-dual gap is used as corresponding termination criteria.
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Figure 4: Application of the proposed approach to an academic toy example. While
both FPD and Nesterov’s approach converge to the global optimum, the former requires
typically far less iterations. Top left: Original image consisting of a circle and four
squares. Top center: Local segmentation based on foreground probabilities with overlaid
noise. This pre-segmentation is used as input to the proposed method. Top right: Result
obtained by our algorithm. In this case the output vector has exactly five nonzero entries
corresponding to the five visible templates. Bottom left: Primal (solid) and dual (dashed)
function value for both approaches in each iteration. Bottom right: Corresponding
primal-dual gap vs. number of iterations.

We think that both algorithms can be further tuned to provide faster convergence. On
the one hand, Nesterov’s procedure uses only worst-case parameters. Additional knowl-
edge of the expected sparsity of the result would enable to provide tighter bounds on
the parameters involved and thus speed up the entire approach. Considering the FPD
method, on the other hand, one possibility to provide faster convergence is to find a more
appropriate, possibly asymmetric choice for the primal and dual step sizes.

Real World Images Next, we demonstrate the applicability of the proposed approach
to real images. To this end we used the color images presented in Fig. 1, 5, and 6.

For the color image, we extracted the pre-segmentation by computing local features
from histograms over regions preselected by the user (Fig. 1), or by inspecting the distance
to the characteristic background (Fig. 5) resp. foreground color (Fig. 6), and a simple local
thresholding operation. These initial segmentations are depicted in Fig. 5 and Fig. 6.

The regularization parameter λ is set by hand and varies between the different experi-
ments. It roughly reflects the minimal amount of pixels that have to be exclusively covered
by a certain basis function in order to justify its presence. The remaining parameters τp, τd
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Figure 5: Application of the proposed approach to an image containing overlapping coins.
Although not all objects are detected our approach reveals promising results and recog-
nizes even highly occluded models. Left: Input image. Center: Local pre-segmentation
obtained by inspecting the distance to the background color and local thresholding; used
as input to the proposed method. Right: segmented result.

are set equally such that they fulfill the convergence property τpτd ≤ 1
‖L‖2 .

For the templates we used predefined image patches shifted to all possible image loca-
tions. A specialized implementation of the corresponding matrix L enables us to perform
matrix vector multiplications efficiently without computing L as a whole. This dramat-
ically speeds up the entire approach without using any additional storage as the corre-
sponding basis functions can be computed on-the-fly.

5.2 Shape Decomposition

We conducted two further experiments to indicate the potential of our template-based
representation of image segmentations for further processing.

Figure 7 shows the segmentation of the horse image obtained with circular templates
of different sizes. The corresponding covering provides information in terms of the corre-
sponding coefficients about the localization of the torso and the limbs.

In a related experiment we used predefined parts of a horse such as its head, the torso,
and the legs, in order to recover them in a given image (Fig. 8). Under moderate variation
of the underlying shape or the observers viewpoint, the proposed approach can robustly
identify the templates in different images and thus provides useful input data for further
template adjustment or contextual processing steps.

5.3 Shape Template Learning

Finally, we indicate the possibility to learn shape templates from sample data in order to
disburden the user from defining templates by hand.

To this end, we added another regularizer to the objective function that enforces spar-
sity of the templates themselves. Unfortunately, determining the optimal templates along
with the optimal segmentation is a highly nonconvex problem such that global optimality
cannot be guaranteed and sufficiently accurate starting configurations are required.

In order to clearly demonstrate the essential points, Fig. 9 shows an academic scenario
where the objective is to learn a small dictionary for recovering the text shown in the upper
left panel. As starting configuration we used the dictionary visualized in the lower left of
Fig. 9, together with the corresponding optimal x resulting from the text segmentation,
i.e. the global optimum of the inference procedure using fixed templates.
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Figure 6: Application of the proposed template-based segmentation approach to a real
world image. Left to right: Original Image, local pre-segmentation using a thresholded
distance to the color red as foreground indicator, shape templates used for segmentation,
and the final result. Note that even highly overlapping parts are labeled correctly.

Applying alternatingly gradient ascent and gradient descent in the corresponding vari-
ables yields an improvement of the dictionary as depicted in the lower right of Fig. 9 while
almost preserving reconstruction performance (upper right panel). Non-existent letters
are removed from the dictionary whereas letters occurring rarely are approximated by the
superposition of more frequently occurring letters. For instance, both “p” and “b” are
reconstructed using a combination of the letters “i”, “o” and “l”, “o”, respectively.

6 Conclusion

We presented an approach to image segmentation based on sparse coverings with shape
templates. To this end, we represented shapes by indicator functions and designed an
objective function that takes into account overlapping templates. We derived a convex re-
laxation that provides a good compromise between approximation of the objective function
and amenability to large-scale numerical optimization. Concerning the latter, we adopted
a saddle-point formulation and investigated two different strategies of sparse convex pro-
gramming. Numerical experiments validate our approach and indicate its potential for
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Figure 7: Shape decomposition by covering with templates of different sizes. Top row: In-
put image and segmented result. Bottom row: Decomposition into torso and limbs based
on the non-vanishing variables xi corresponding to large and small templates, respectively.

computational image analysis.
Our further work will focus on the learning of shape templates. Because this problem is

highly non-convex due to the interleaving with image segmentation as a subroutine, there
is considerable potential for further research. Concerning theoretical aspects, analyzing
the reconstruction performance of our approach together with its robustness remains a
challenge, because dictionaries of shape templates significantly differ from those considered
in the compressed sensing literature. Additionally, we will augment our implementation
with a stage for extracting image features that are significant for the segmentation of
specific object categories.
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Figure 8: Image segmentation and shape decomposition with fixed templates is fairly
robust against moderate variation of the overall shape or the observer’s viewpoint. No
parameter tuning was involved.

Figure 9: Learning shape templates from examples. Top left: Input image data. Bottom
left: Initial dictionary. Bottom right: Learned dictionary. Top right: Segmentation
(decomposition) of the input data using the learned dictionary. Learning effectively reduces
the initial number of templates by selecting those that are essential for decomposing the
image data. Removed templates are automatically replaced by superpositions of remaining
templates.

Appendix

Proof. (Prop. 3.1) For the conjugate of h,

h∗(q) = sup
p∈Rn
{〈p, q〉 − h(p)}

= max{0, sup
p∈{0,1}n,p 6=0

〈p, q〉 − 1}.

If there is some qi > 0, the maximizer p of the right hand side can be set according to
pi = 1 ⇔ qi > 0 (otherwise it contradicts the maximality assumption). If all qi < 0 then
the right hand side must be smaller than −1 =

∑
i(qi)+ − 1, where (qi)+ := max{0, qi}.

Thus we have

h∗(q) = max{0,
∑
i

(qi)+ − 1}. (19)
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For the biconjugate h∗∗, we have

h∗∗(r) = sup
q∈Rn
{〈r, q〉 − h∗(q)}

= sup
q∈Rn

{
〈r, q〉 −max{0,

∑
i

(qi)+ − 1}

}
.

If there is some ri < 0 we may let qi → −∞ (and all other qj = 0), so h∗∗(r) = +∞. If
there is some ri > 1 we may let qi → +∞ and again have h∗∗(r) = +∞, thus

h∗∗(r) =

{
supq∈Rn(〈q, r〉 −max{0,

∑
i(qi)+ − 1}), r ∈ [0, 1]n

+∞, otherwise.

The first term is equivalent to

max

{
sup

q,
∑

i(qi)+61
〈q, r〉, sup

c>1
sup∑

i(qi)+=c

(
〈q, r〉 −

∑
i

(qi)+ + 1

)}
ri>0
= max

{
vecmax(r), sup

c>1
sup∑

i(qi)+=c
(〈q, r〉 − c+ 1)

}

= max

{
vecmax(r), sup

c>1

(
1− c+ sup∑

i(qi)+=c
〈q, r〉

)}

= max

{
vecmax(r), sup

c>1
(1− c+ c vecmax(r))

}
ri61⇒vecmax(r)61

= max {vecmax(r), vecmax(r)} = vecmax(r)

which implicates the assertion for h∗∗. In a similar fashion,

g∗(q) = sup
p∈Rn
{〈p, q〉 − g(p)} = max{−1, sup

p∈{0,1}n,p 6=0
〈p, q〉}

= max{−1,

{ ∑
i(qi)+, ∃qi > 0,

vecmax(q), otherwise,
} =


∑

i(qi)+, 0 6 vecmax(q),
vecmax(q), −1 < vecmax(q) < 0,
−1, vecmax(q) 6 −1.

The biconjugate is then defined as

g∗∗(r) = sup
q∈Rn
{〈q, r〉 − g∗(q)}.

Again, for some ri < 0 let q1 = . . . = qk → −∞, thus g∗∗(r) = +∞. For ri > 1 let
qi → +∞. So as expected g∗∗(r) = +∞ for r 6∈ [0, 1]n. Thus

g∗∗(r) =


supq∈Rn

〈q, r〉 −

∑

i(qi)+, 0 6 vecmax(q),
vecmax(q), −1 < vecmax(q) < 0,
−1, vecmax(q) 6 −1.

 r ∈ [0, 1]n,

+∞, otherwise.
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Again focusing on the first term, we get

sup
q∈Rn

〈q, r〉 −

∑

i(qi)+, 0 6 vecmax(q),
vecmax(q), −1 < vecmax(q) < 0,
−1, vecmax(q) 6 −1.


= max

{
sup

vecmax(q)>0
{〈q, r〉 −

∑
i

(qi)+}, sup
vecmax(q)6−1

{〈q, r〉+ 1},

sup
−1<vecmax(q)<0

{〈q, r〉 − vecmax(q)}
}

= max

{
0, 1− e>r, sup

0<c<1

(
c+ sup

vecmax(q)=−c
〈q, r〉

)}

= max

{
0, 1− e>r, sup

0<c<1
c(1− e>r)

}
=

{
max{0, 1− e>r, 1− e>r}, 1− e>r > 0,
max{0, 1− e>r, 0}, 1− e>r < 0,

= max{0, 1− e>r} = (1− e>r)+ ,

from which Prop. 3.1 follows.
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