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A + B = 4

A = ?   B = ?
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Regularity

A natural object (and data in general) is often
– composed of few objects,
– each of which is “simple”  (e.g., geometrically)



u



b = T(u)



b = T(u)+n



b = T’(u)+n’



Missing data

R. Hocking J. Acosta-Cabronero



Given measurements b, find image data u so that

b = T(u) + n

T structural operator, n random noise
Often the direct reconstruction is not unique, not stable, 

or not deterministic – we need prior knowledge



Variational methods

We reconstruct the unknown data u from the
measurements b by minimizing the energy

Advantages:
• Intuitive – we specify what the results should look like
• Often statistical motivation – maximum a posteriori

estimate
• Modular, reusable components

Tikhonov ‘63







Trade-offs

Top-down approach

• Physically/biologically 
motivated

• Advantages:
– Very specific to the problem
– Model parameters have 

meaning

Bottom-up approach

• Built from simple, well-
understood components

• Advantages:
– Mathematical analysis
– Efficient and/or global 

optimization often possible

Model complexity vs. computability
Local minimizers vs. global minimizers



Convexity

Convexity assures that every local minimizer of the
energy is also a global minimizer



Non-smoothness

Non-smoothness often allows perfect recovery.

If f is convex but non-differentiable, then (Fermat):



A simple example

Assume u is scalar and our (perfect!) prior knowledge is 
that u is zero. We measure b = u + n and try:



A simple example

Assume u is scalar and our (perfect!) prior knowledge is 
that u is zero. We measure b = u + n and try:

The solution is 
exact for a

wide range of 
measurements!



Smooth:

Nonsmooth:



Basis Pursuit

Given an overcomplete dictionary A and a vector u with 
few non-zero components, recover u from b = A u:

Applications in compression, data separation, machine 
learning, approximation theory,…

Compressive Sensing, Dictionary Learning consider
how to choose A optimally.

Candes, Romberg, Tao ’06; Donoho ’06
Overview: Foucart, Rauhut ‘10

?



Phase transition

This gives the exact (sparsest) solution in many cases!



Sparse Shape Decomposition

Lellmann, Breitenreicher, Schnörr ‘11









Back to the roots



Gradient Descent

To minimize f(u), follow the gradient downwards:

This backward step is unique and can be computed 
explicitly for many “simple” convex functions.

Then apply backward steps to saddle-point form 

This is slow: O(1/N), linear if strongly convex. BUT:
Rockafellar ’76; Lions, Mercier ’79; Glowinski, Marocco ’75; Gabay, Mercier ’78; Bertsekas, Tsitsiklis ’89

Alvarez, Attouch ’01; Nesterov ’04; Pock et al. ’09; Combettes, Pesquet ’11; Shefi, Teboulle ‘14



The 80-20 rule

Sometimes quantity (speed) beats quality (accuracy)!



Demo



But what if…



With:  V. Corona, C. Schönlieb, J. Acosta-Cabronero, P.~Nestor/DZNE Magdeburg





With: J. Lee, D. Coomes, C. Schönlieb



Labeling problems



First approach:

This is a combinatorial problem and generally very hard:
• X does not have an additive structure - no gradients,
• in particular there is no convexity.



Let’s replace it!



Relaxation

Potts ’52; Boykov et al. ’98, ’01; Kleinberg, Tardos ’01
Zach et al. ’08; Lellmann, Becker, Schnörr ’09; Chambolle, Cremers, Pock ‘11



Relaxation

Hard decisions are 
replaced by soft 
“probabilities”

Potts ’52; Boykov et al. ’98, ’01; Kleinberg, Tardos ’01
Zach et al. ’08; Lellmann, Becker, Schnörr ’09; Chambolle, Cremers, Pock ‘11



We would like to extend the problem

to the probability measures:

How to define f?
• If u is integral at every point, f should agree with f ’
• Otherwise, f should not create artificial minimizers

Relaxation











Relaxing segmentation

Assume
• assigning label i to point x costs si(x).
• boundary between label i and j costs d(i,j).
Then a possible local relaxation is

Chambolle, Cremers, Pock ’11
Lellmann, Schnörr, SIAM J. Imaging Sci.  ’10



Is it optimal?



Is it optimal?



Proving optimality

For two classes, recovery is exact:

For n > 2 classes, the discrete problem is NP-hard. But:

Two-class: Strang ’83; Chan, Esedoglu, Nikolova ’06; Zach et al. 09, Olsson et al. 09
Finite-dimensional: Dahlhaus et al. ‘94, Kleinberg, Tardos ‘99, Boykov et al. ‘01, Komodakis Tziritas ‘07

Multi-class: Lellmann, Lenzen, Schnörr, J. Math. Imag. Vis. 2013



Exactness







Non-convex functions Manifold-valued data

Cremers, Strekalovskiy ’12
Lellmann, Strekalovskiy, Kötter, Cremers ‘13



Manifold-valued data

Cremers, Strekalovskiy ’12
Lellmann,  Strekalovskiy, Kötter, Cremers ‘13



RGB-Depth Segmentation (Diebold et al. , SSVM ‘15)

Kolev et al., Int. J. Comp. Vis. ‘09



Why so complicated?



Combinatorial methods

Solve 2-class case using min-cut/max-flow, n-class case 
using combinatorial solvers: integer program, branch 

and bound/cut, move making, commercial solvers

Markov Random Fields, Graphical Models, Graph Partitioning,…





A continuous world



Take-home

Variational methods are intuitive

(True) non-smoothness is essential

If it doesn’t fit, think big!

We live in a continuous world (and we actually need the hard math)

J.Lellmann@damtp.cam.ac.uk
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