A gentle introduction to

Encoding prior knowledge in image- and data analysis

J. Lellmann

Heidelberg Laureate Forum 2015 24 August 2015

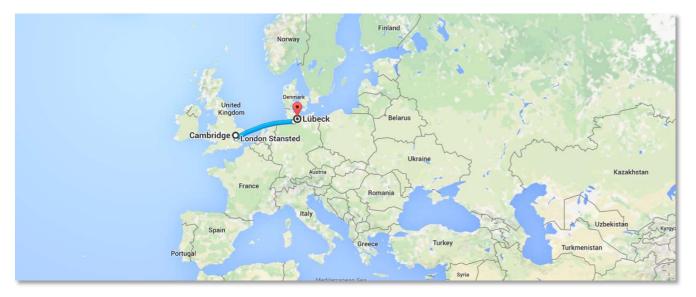
J.Lellmann@damtp.cam.ac.uk

Cambridge Image Analysis University of Cambridge

www.damtp.cam.ac.uk/research/cia

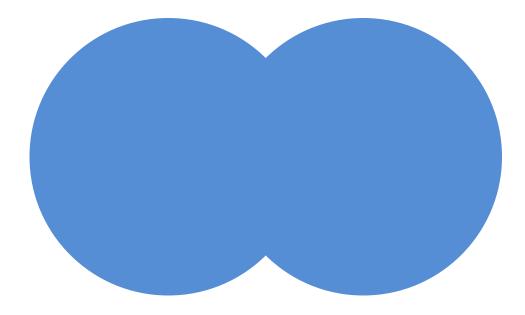
Mathematical Image Computing University of Lübeck

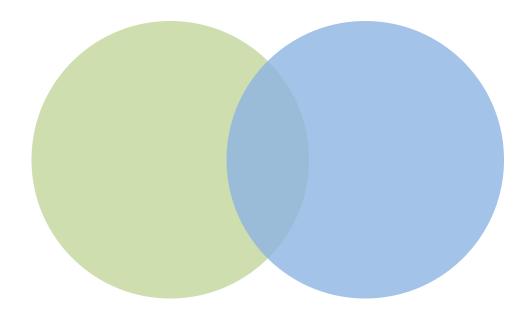
www.mic.uni-luebeck.de

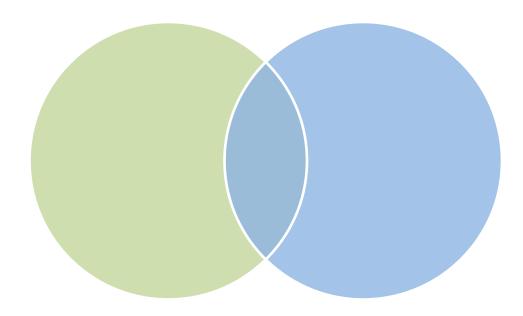


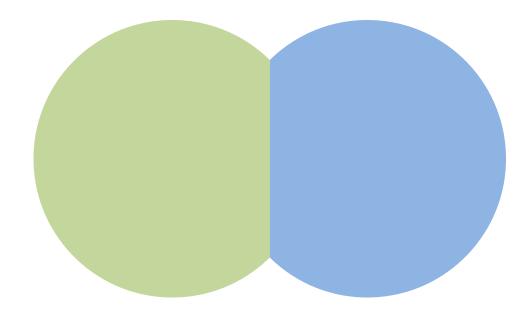
$$A + B = 4$$
$$A = ? B = ?$$

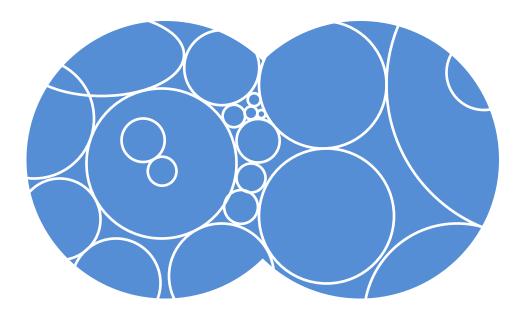
C. Moler '90, M. Teboulle '15







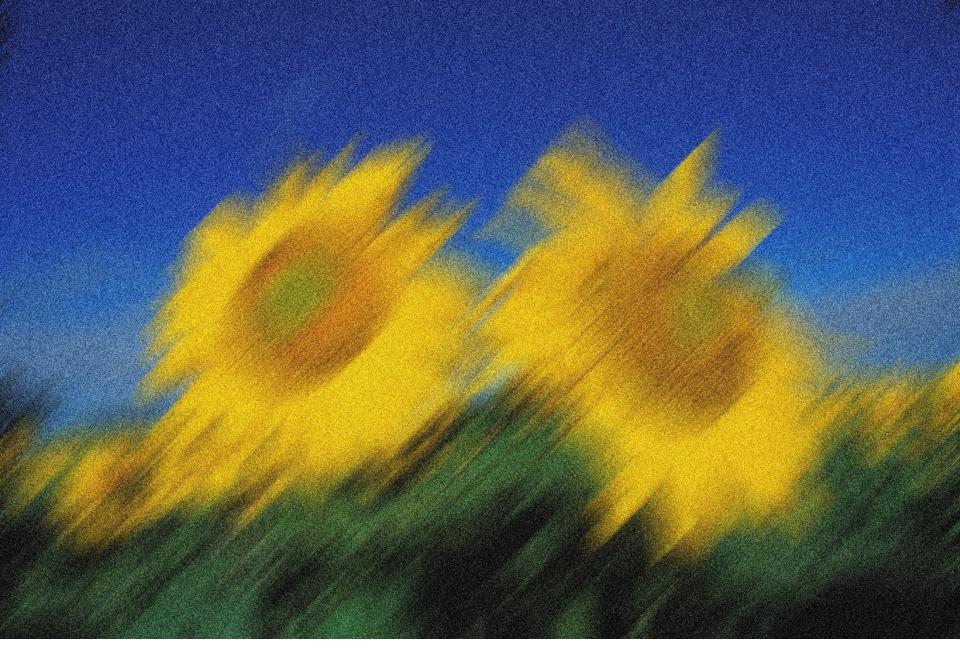




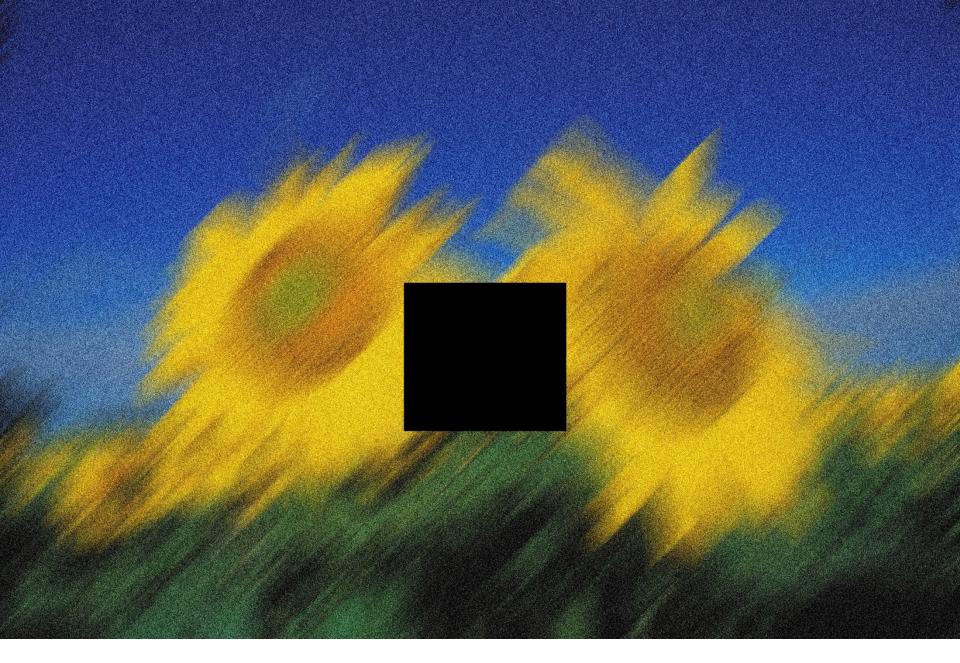
Regularity

A natural object (and data in general) is often – composed of few objects,

each of which is "simple" (e.g., geometrically)

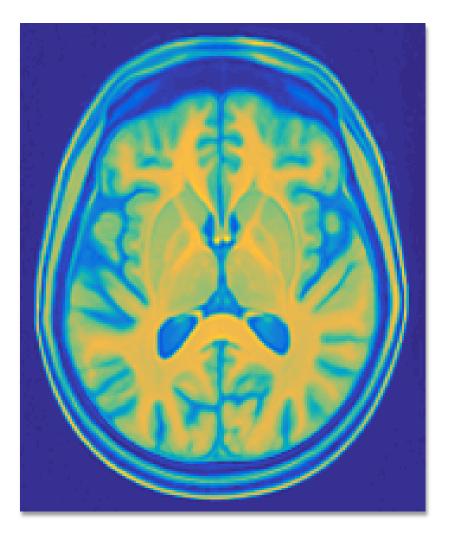


b = T(u)+n



b = T'(u)+n'

Missing data



R. Hocking

J. Acosta-Cabronero

Given measurements **b**, find image data **u** so that $\mathbf{b} = \mathbf{T}(\mathbf{u}) + \mathbf{n}$

T structural operator, **n** random noise Often the direct reconstruction is not unique, not stable, or not deterministic – we need prior knowledge

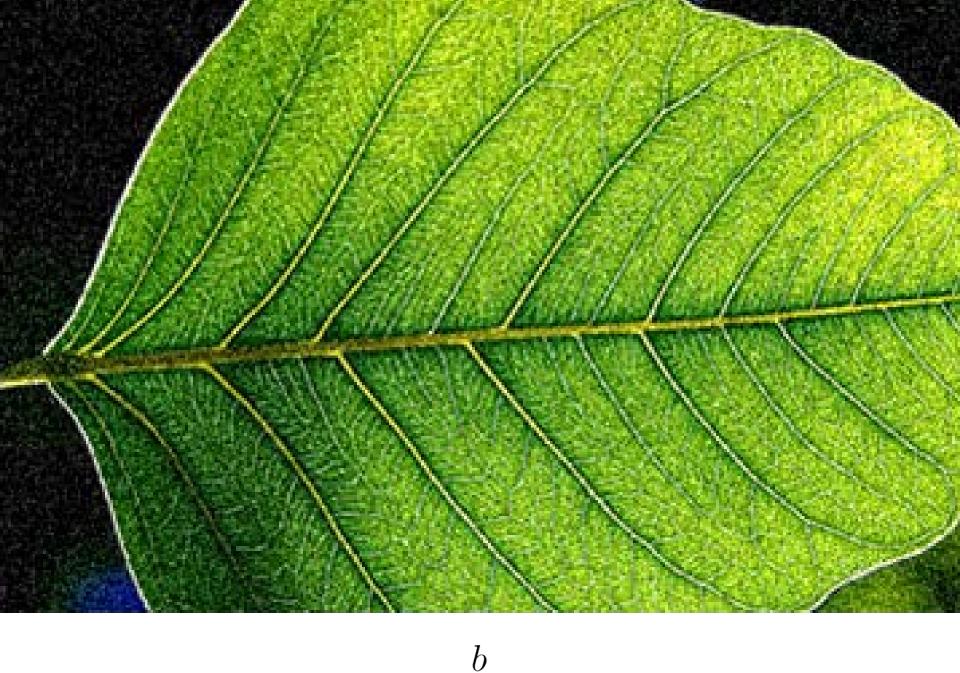
Variational methods

We reconstruct the unknown data u from the measurements b by minimizing the energy

$$\min_{u} \{ D(T(u); b) + R(u) \}$$

Advantages:

- Intuitive we specify what the results should look like
- Often statistical motivation maximum a posteriori estimate
- Modular, reusable components



 $\int_{\Omega} \|u(x) - b(x)\|_2^2 dx + \lambda \int_{\Omega} \|\nabla u(x)\|^2 dx$

Trade-offs

Model complexity vs. computability Local minimizers vs. global minimizers

Top-down approach

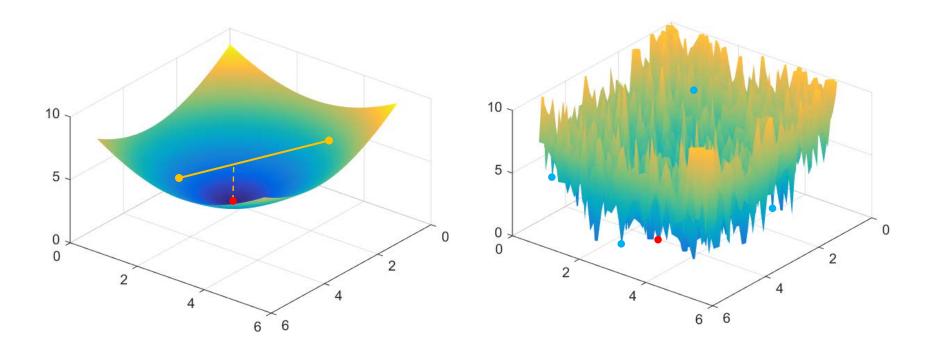
- Physically/biologically motivated
- Advantages:
 - Very specific to the problem
 - Model parameters have meaning

Bottom-up approach

- Built from simple, wellunderstood components
- Advantages:
 - Mathematical analysis
 - Efficient and/or global optimization often possible

Convexity

Convexity assures that every local minimizer of the energy is also a global minimizer

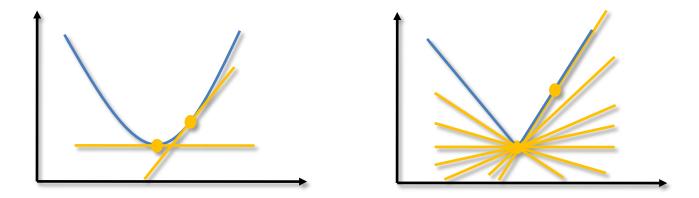


Non-smoothness

Non-smoothness often allows perfect recovery.

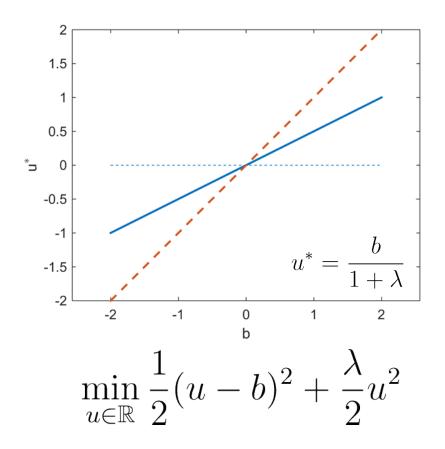
If f is convex but non-differentiable, then (Fermat):

 $0 \in \partial f(u) \Rightarrow u$ is a global minimizer



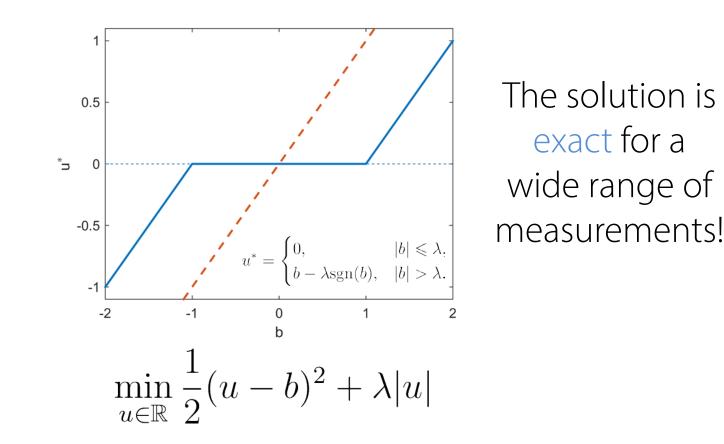
A simple example

Assume *u* is scalar and our (perfect!) prior knowledge is that *u* is zero. We measure b = u + n and try:



A simple example

Assume *u* is scalar and our (perfect!) prior knowledge is that *u* is zero. We measure b = u + n and try:



Smooth:

$$u = 0 \min_{u \in \mathbb{R}} \frac{1}{2} (al \rightarrow b)^2 b + \frac{\lambda}{2} u^2$$

Nonsmooth:

$$u = \operatorname{Omint}_{u \in \mathbb{R}} \frac{1}{2} (\operatorname{nal} - \cancel{a})^2 + \cancel{a} = \operatorname{Omint}_{u \in \mathbb{R}} \frac{1}{2} + \operatorname{Omi$$

Basis Pursuit

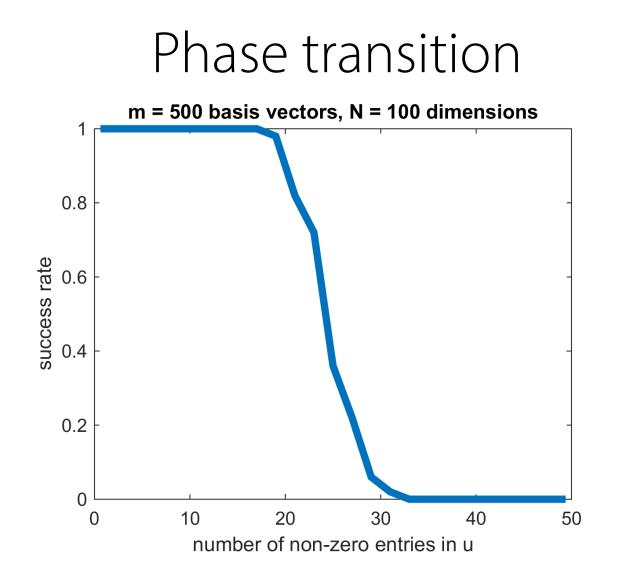
Given an overcomplete dictionary A and a vector u with few non-zero components, recover u from b = A u:

$$\min_{u \in \mathbb{R}^m} \|u\|_{0} \text{ subject to } Au = b$$

Applications in compression, data separation, machine learning, approximation theory,...

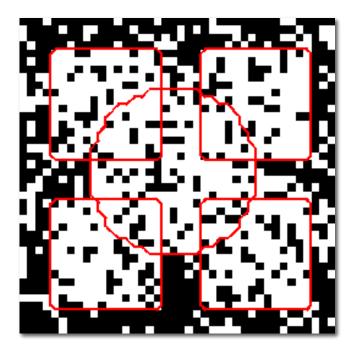
Compressive Sensing, Dictionary Learning consider how to choose *A* optimally.

> Candes, Romberg, Tao '06; Donoho '06 Overview: Foucart, Rauhut '10

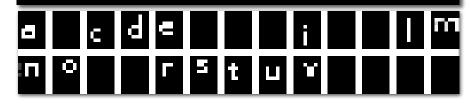


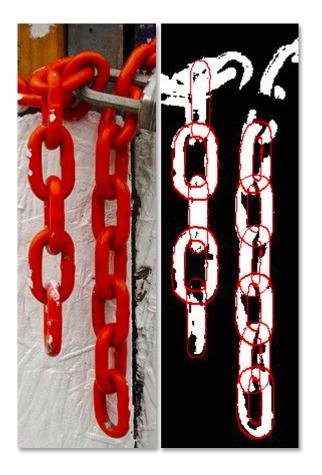
This gives the exact (sparsest) solution in many cases!

Sparse Shape Decomposition

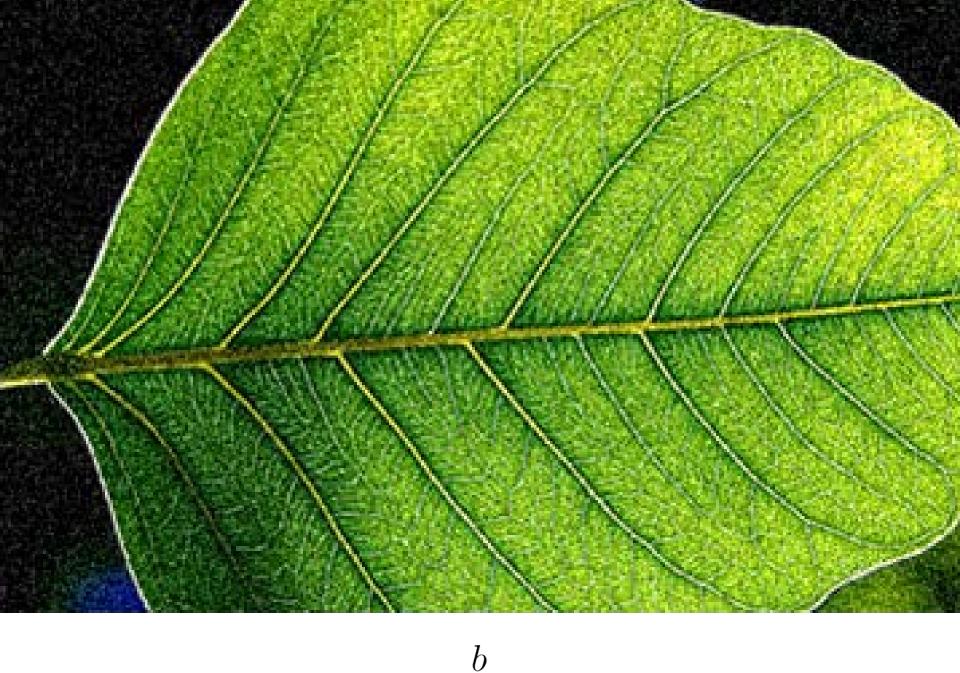


irmod tempor invidunt ut labore et dolo oluptua istiviero eos et accusam et just





Lellmann, Breitenreicher, Schnörr '11



 $\int_{\Omega} \|u(x) - b(x)\|_2^2 dx + \lambda \int_{\Omega} \|\nabla u(x)\|^2 dx$

 $\int_{\Omega} \|u(x) - b(x)\|_2 dx + \lambda \int_{\Omega} d\|Du\|_2$

Back to the roots

Gradient Descent

To minimize f(u), follow the gradient downwards:

$$u_t = -\nabla f(u) \qquad \longleftarrow \qquad \frac{u^{k+1} - u^k}{t^k} \in -\partial f(u^{k+1})$$

This backward step is unique and can be computed explicitly for many "simple" convex functions.

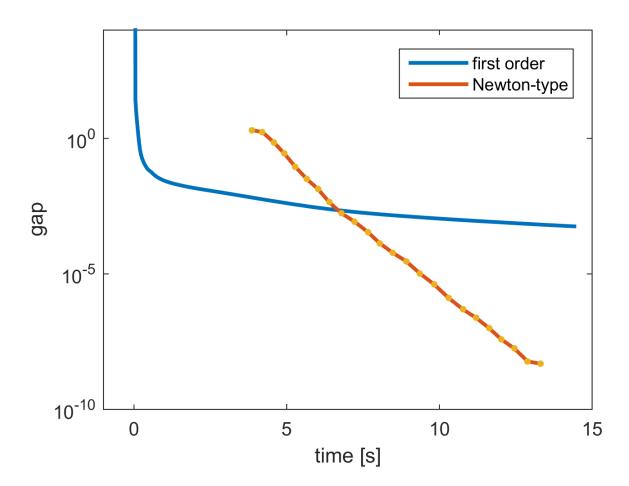
Then apply backward steps to saddle-point form

$$\inf_{u} \sup_{v} F(u) + v^{\top} A u - G(v)$$

This is slow: O(1/N), linear if strongly convex. **BUT:**

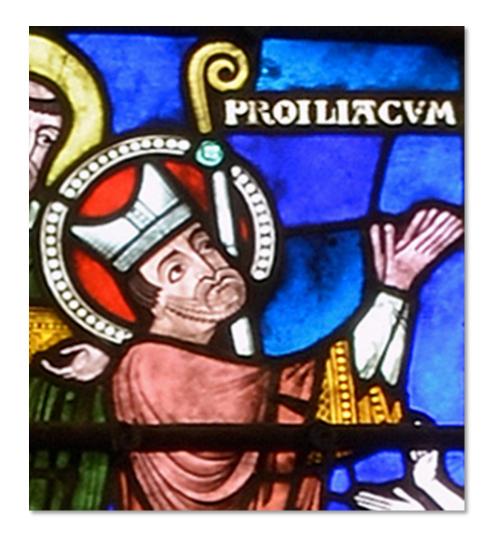
Rockafellar '76; Lions, Mercier '79; Glowinski, Marocco '75; Gabay, Mercier '78; Bertsekas, Tsitsiklis '89 Alvarez, Attouch '01; Nesterov '04; Pock et al. '09; Combettes, Pesquet '11; Shefi, Teboulle '14

The 80-20 rule

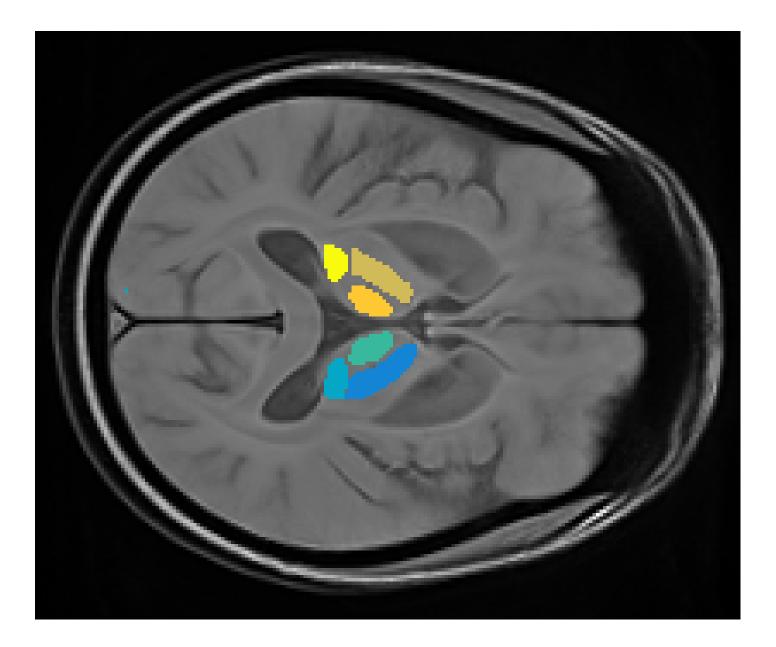


Sometimes quantity (speed) beats quality (accuracy)!

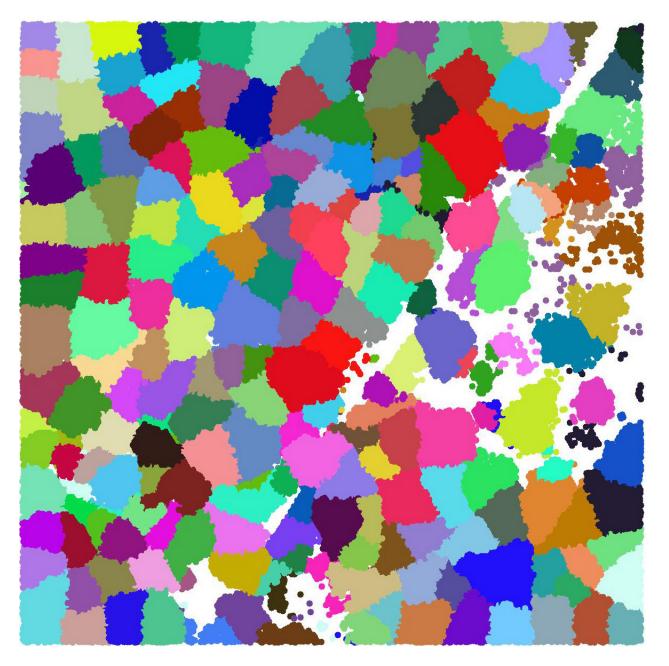
Demo



But what if...

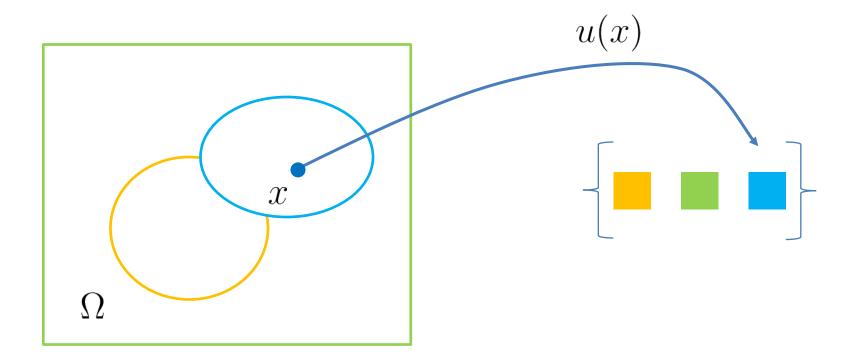


With: V. Corona, C. Schönlieb, J. Acosta-Cabronero, P.~Nestor/DZNE Magdeburg



With: J. Lee, D. Coomes, C. Schönlieb

Labeling problems



First approach:

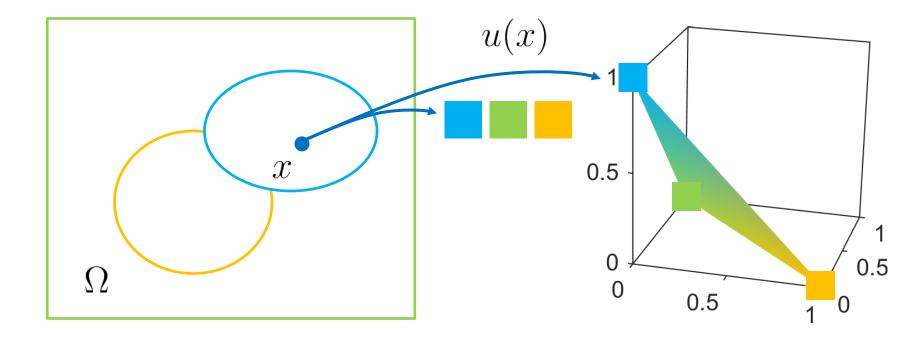
$$\min_{u:\Omega \to X} f(u) := D(u;I) + R(u)$$
$$X := \left\{ \blacksquare \blacksquare \right\}$$

This is a combinatorial problem and generally very hard:

- X does not have an additive structure no gradients,
- in particular there is no convexity.

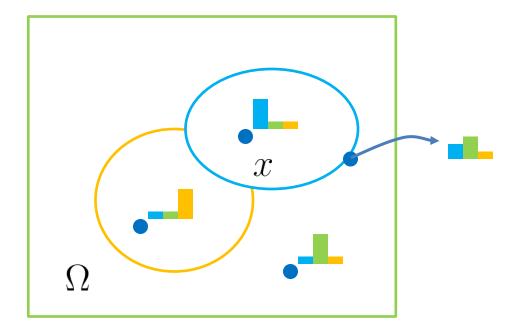
Let's replace it!

Relaxation



Potts '52; Boykov et al. '98, '01; Kleinberg, Tardos '01 Zach et al. '08; Lellmann, Becker, Schnörr '09; Chambolle, Cremers, Pock '11

Relaxation



Hard decisions are replaced by soft "probabilities"

Potts '52; Boykov et al. '98, '01; Kleinberg, Tardos '01 Zach et al. '08; Lellmann, Becker, Schnörr '09; Chambolle, Cremers, Pock '11

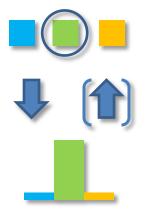
Relaxation

We would like to extend the problem

 $\min_{u':\Omega\to X} f'(u')$

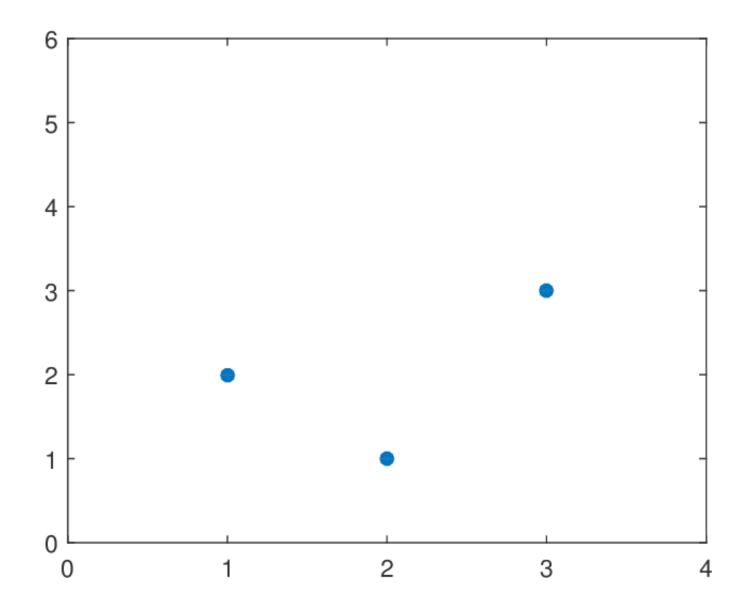
to the probability measures:

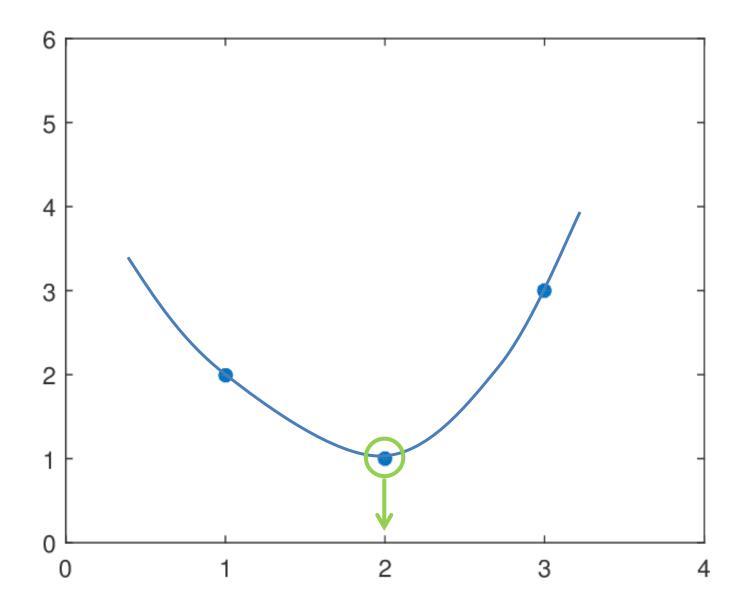
 $\min_{u:\Omega\to\mathcal{P}(X)}f(u)$

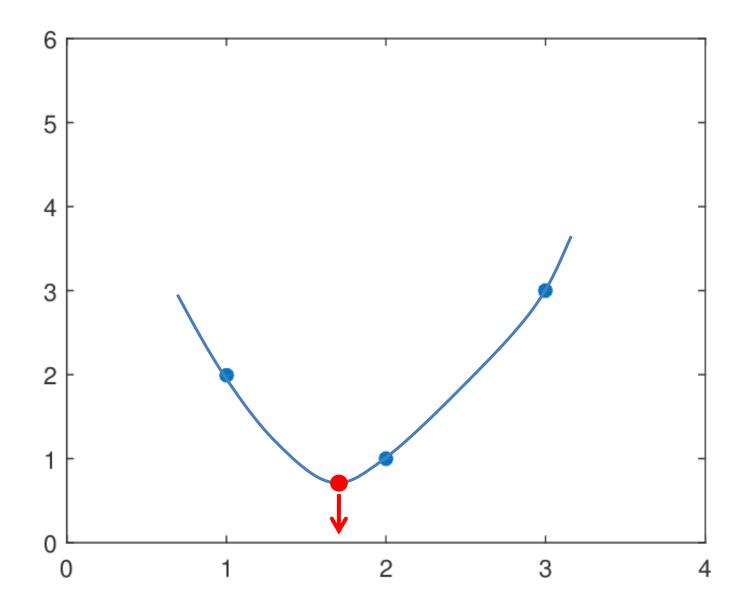


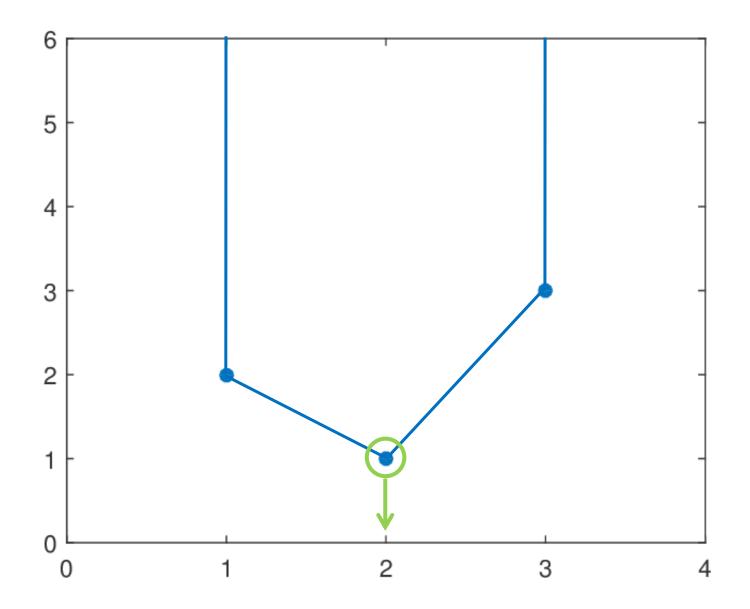
How to define *f*?

- If *u* is integral at every point, *f* should agree with *f* ′
- Otherwise, *f* should not create artificial minimizers









Relaxing segmentation

Assume

- assigning label *i* to point x costs $s_i(x)$.
- boundary between label i and j costs d(i,j).

Then a possible local relaxation is

$$\min_{u \in \mathrm{BV}(\Omega, \mathcal{P}(X))} f(u) := \int_{\Omega} \langle u(x), s(x) \rangle dx + \int_{\Omega} d\Psi(Du)$$
$$\Psi(z) = \sup \langle v, z \rangle$$

$$\mathcal{D} = \{ (v^1, \dots, v^L) \in \mathbb{R}^{d \times L} | \| v^i - v^j \| \leq d(i, j), \sum_k v^k = 0 \}$$

 $v \in \mathcal{D}$

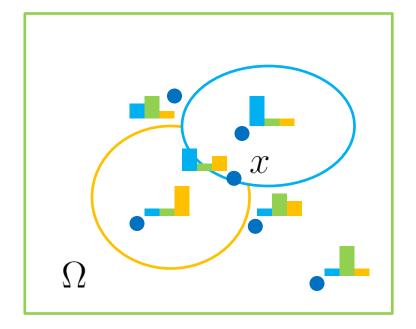
Chambolle, Cremers, Pock '11 Lellmann, Schnörr, SIAM J. Imaging Sci. '10

 Ω_i

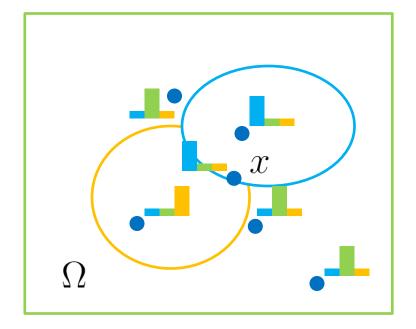
d(i, j

 Ω_i

Is it optimal?



Is it optimal?



Proving optimality

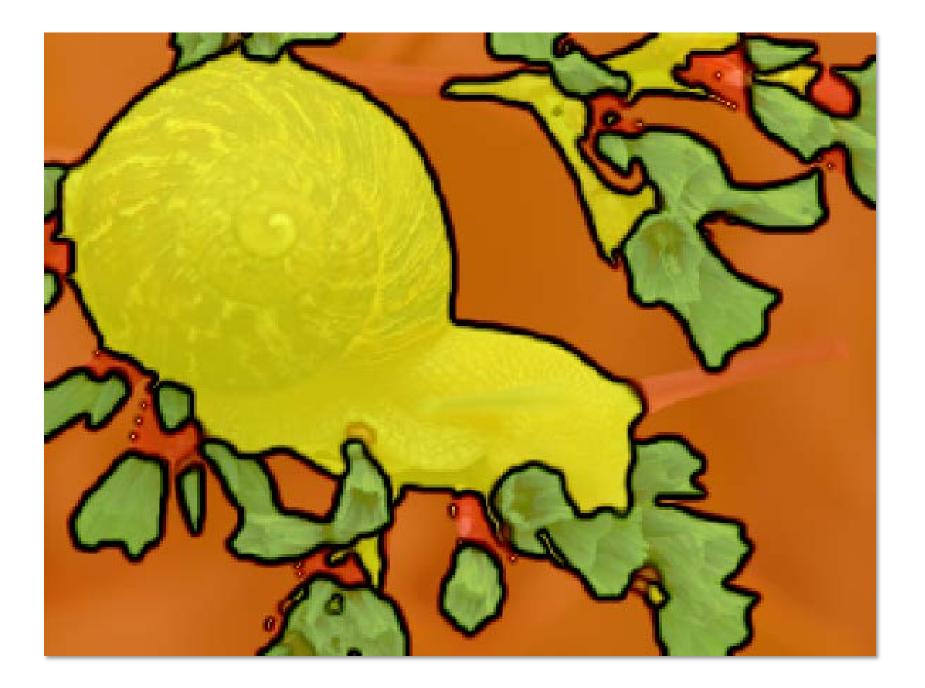
For two classes, recovery is exact:

$$f(\text{round}(u^*_{\text{relaxed}})) = f(u^*_{\text{integer}})$$

For n > 2 classes, the discrete problem is NP-hard. But:

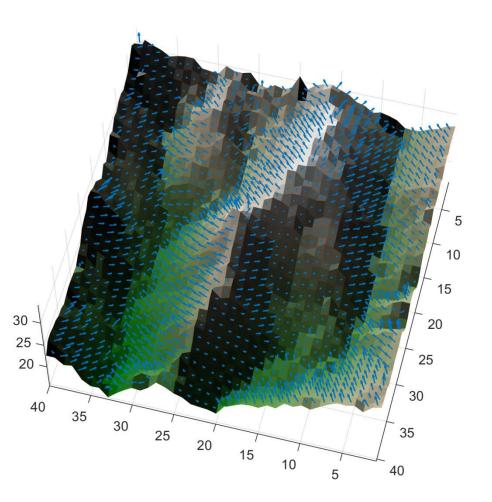
$$\mathbb{E}_{\gamma} f(\operatorname{round}_{\gamma}(u^*_{\operatorname{relaxed}})) \leqslant 2 \frac{\max_{i \neq j} d(i,j)}{\min_{i \neq j} d(i,j)} f(u^*_{\operatorname{integer}})$$

Two-class: Strang '83; Chan, Esedoglu, Nikolova '06; Zach et al. 09, Olsson et al. 09 Finite-dimensional: Dahlhaus et al. '94, Kleinberg, Tardos '99, Boykov et al. '01, Komodakis Tziritas '07 Multi-class: Lellmann, Lenzen, Schnörr, J. Math. Imag. Vis. 2013



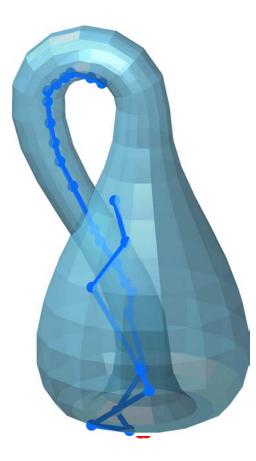
Non-convex functions

Manifold-valued data



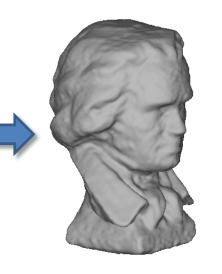
Cremers, Strekalovskiy '12 Lellmann, Strekalovskiy, Kötter, Cremers '13

Manifold-valued data



Cremers, Strekalovskiy '12 Lellmann, Strekalovskiy, Kötter, Cremers '13

RGB-Depth Segmentation (Diebold et al., SSVM '15)

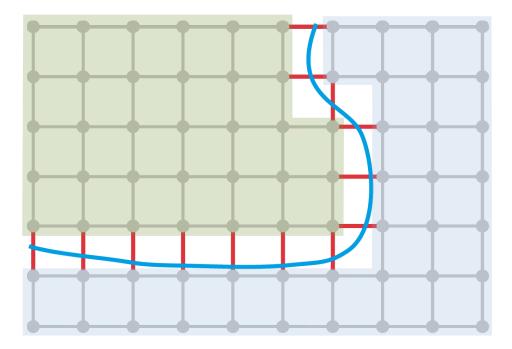


Kolev et al., Int. J. Comp. Vis. '09

Why so complicated?

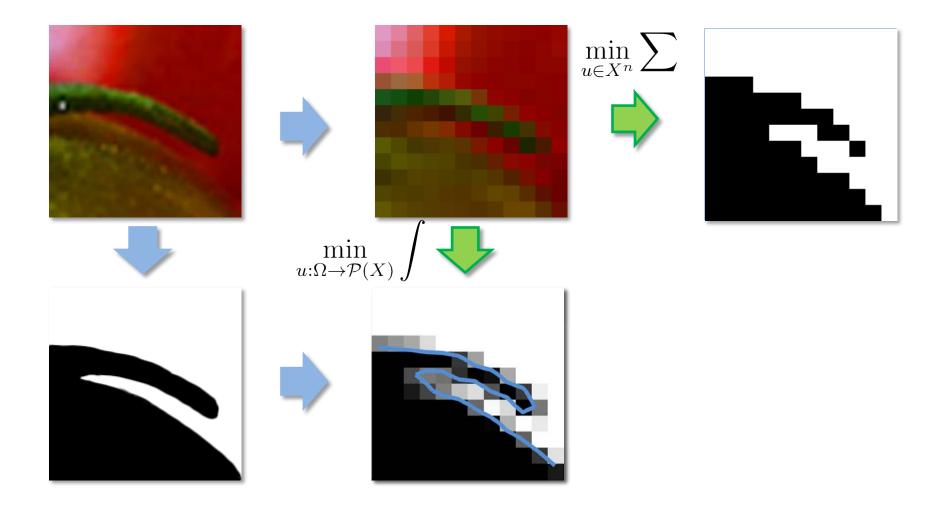
Combinatorial methods

Markov Random Fields, Graphical Models, Graph Partitioning,...



Solve 2-class case using min-cut/max-flow, n-class case using combinatorial solvers: integer program, branch and bound/cut, move making, commercial solvers

A continuous world



Take-home

Variational methods are intuitive

(True) non-smoothness is essential

If it doesn't fit, think big!

We live in a continuous world (and we actually need the hard math)

J.Lellmann@damtp.cam.ac.uk