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Overview

I Optimization for convex non-smooth variational problems: relaxed
combinatorial problems, lifted functionals, . . .

I Based on generic saddle point formulation
I Dual Multiple-Constraint Douglas-Rachford (DMDR) optimization
I Handles difficult dual constraints⇒ tighter relaxation possible
I Globally convergent, order of magnitude faster than FPD or DR
I Bonus: Increased numerical robustness

Saddle-Point Framework
Variational Approach. Define output (image, labels, . . . ) as minimizer of
functional,

u∗ := arg min
u∈C

f (u) . (1)

Many interesting f are convex but nonsmooth (`1 sparsity, total variation),
which complicates optimization. Remedy: saddle point formulation,

minu∈Cmaxv∈D g(u, v) , (2)
g(u, v) := 〈u, s〉 + 〈Lu, v〉 − 〈b, v〉 , (3)

with s ∈ Rn, b ∈ Rm, L ∈ Rm×n, closed convex sets C ⊆ Rn and D ⊆ Rm.
Frequently, D is complicated, but is the intersection of simple sets:

D = D1 ∩ . . . ∩ Dr . (4)

Application: Multiclass Labeling

Problem. For each pixel x ∈ Ω ⊆ Rd, find a class label `(x) ∈ {1, . . . , l}
according to local data fidelity and regularization term. Penalize boundary
length between classes i and j by d(i, j). Combinatorial problem!
Convex Relaxation. Embed labels into Rl, identify the i-th label with unit
vector ei and relax to the unit simplex. Find

min
u∈C
{〈u, s〉 + J(u)} , C := {u ∈ BV(Ω,Rl)|u(x) > 0,

∑
i

ui(x) = 1} , (5)

J(u) := sup
v∈D

∫
Ω

〈Du, v〉, D := {v ∈ (C∞c )d×l|v(x) ∈ Dloc∀x ∈ Ω} , (6)

Dloc := {v = (v1, . . . , vl) ∈ Rd×l|‖vi − vj‖ 6 d(i, j) ∀i < j,
∑

k

vk = 0} . (7)

⇒ Tight relaxation, but difficult regularizer/dual constraints: Non-smooth, no
closed-form expression. But: fits naturally into saddle point framework.

Douglas-Rachford Splitting for Multiple Dual Constraints

Motivation. First-order methods such as FPD need to compute iterative
projections on D, which are slow and inexact.
Approach. Reduce to projections on the Di by solving the dual problem

maxv∈D1∩,...,∩Dr minu∈C g(u, v) , (8)

introducing auxiliary variables and splitting according to

min
vi∈Rm

δ−L>(1
r

∑
i vi)=z,v1=...=vr︸ ︷︷ ︸

f1

+
∑

iδvi∈Di + 〈1r
∑

ivi, b〉 + max
u∈C
〈u, z− s〉︸ ︷︷ ︸

f2

. (9)

Apply Douglas-Rachford iteration, which requires proximal steps on f1 and
f2, and converges for any step size. But: How to extract a primal solution u?

Algorithm and Properties

Proposition 1. Let D1, . . . ,Dr, C be closed convex sets, C bounded and

ri(D1) ∩ . . . ∩ ri(Dr) 6= ∅ and ri(C) 6= ∅. Then Alg. 1 converges in (vk
i , z
′′k).

Proposition 2. Let (v := v1 = . . . = vr, z′′) be a fixed point of Alg. 1. Then z′′

is a solution of the primal problem (2).

Properties.

I First-order method: suitable for large scale, easy to exploit sparsity.
I Requires only projections on the simple sets C and Di.
I Linear equation system can often be solved explicitly using DCT.
I Convergent for any step size τ .
I Handles large class of variational problems.
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Figure: Runtime performance on labeling problems with 12 classes. Top row: Input images
(top) and segmentation into 12 classes (bottom). Left: Dual objective vs. time for 500
iterations on the “crop” image. The proposed method outperforms DR and FPD by a factor of
10 resp. 17. Right: Infeasibility of the dual iterates vs. number of iterations. Due to inexact
projections, FPD and DR get stuck and converge to infeasible solutions, while DMDR
gradually decreases the infeasibility to zero, increasing numerical robustness.
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Figure: Application to multiclass segmentation of weakly labeled input image. Top row:
Segmentation of input image into 3 classes based on seed regions marked by the user.
Bottom row: Dual objectives (left) and `2 distance to the reference solution (right) vs. time.
With low-accuracy approximate projections, FPD and DR get stuck in an infeasible solution
(solid). Increasing the projection accuracy reduces the effect but slows down convergence
(dashed). The proposed DMDR method avoids these problems and returns high-quality
solutions after only a few iterations.
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