Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem

Jan Lellmann, Frank Lenzen, Christoph Schnörr

Image and Pattern Analysis Group Universität Heidelberg

EMMCVPR 2011 St. Petersburg, July 25, 2011

J. Lellmann - Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem

Motivation – Problem

Labeling problem:

- Partition image domain Ω into L regions
- Discrete decision at each point in continuous domain Ω
- Variational Approach:

$$\min_{\ell} \underbrace{\int_{\Omega} s(\ell(x), x) dx}_{\text{local data fidelity}} + \underbrace{J(\ell)}_{\text{regularizer}}$$

Motivation – Multiclass Labeling

► **Applications:** Denoising, segmentation, 3D reconstruction, depth from stereo, inpainting, photo montage, optical flow,...

Spatially continuous formulation avoids metrication artifacts:

Model – Multi-Class Labeling

Multi-class relaxation: [Lie et al. 06, Zach et al. 08, Lellmann et al. 09, Pock et al. 09]

• Embed labels into \mathbb{R}^L as $\mathcal{E} := \{e^1, \dots, e^L\}$, relax to the unit simplex:

$$\Delta_{L} := \{ x \in \mathbb{R}^{L} | x \ge 0, \sum_{i} x_{i} = 1 \} = \operatorname{conv} \mathcal{E},$$
$$\min_{u \in \mathsf{BV}(\Omega, \Delta_{L})} f(u), \quad f(u) := \int_{\Omega} \langle u(x), s(x) \rangle dx + \int_{\Omega} \Psi(Du)$$

Advantages: No explicit parametrization, rotation invariance, convex

Model – Rounding

Fractional solutions may occur:

▶ Goal: Find rounding scheme $u^* \mapsto \bar{u}^* : \Omega \to \{e^1, \dots, e^L\}$ such that

for some $\delta \ge 0$.

Model – Rounding

A posteriori approaches:

[BaeYuanTai10, LellmannSchnörr10]

- Require primal and/or dual solution
- Depend strongly on specific input data

- Existing a priori bounds:
 - Discretized setting [Dahlhaus et al. 94, KleinbergTardos 99, Boykov et al. 01, KomodakisTziritas 07]
 - Continuous two-class case [Strang 83, ChanEsedogluNikolova 06, Zach et al. 09, Olsson et al. 09]
- **This talk:** Spatially continuous, multi-class, a priori bounds

► *Two*-class case: Find region $C \subseteq \Omega$ minimizing [ChanVese01]

$$\min_{C} \int_{C} (I-c_1)^2 dx + \int_{\Omega \setminus C} (I-c_2)^2 dx + \lambda \mathcal{H}^{d-1}(\partial C)$$

▶ Reformulate using *indicator function* of *C* and relax:

$$\min_{u \in \mathsf{BV}(\Omega,[0,1])} \int_{\Omega} u(I-c_1)^2 + (1-u)(I-c_2)^2 dx + \lambda TV(u)$$

Two-class case: Generalized coarea formula

$$f(u) = \int_0^1 f(\bar{u}_\alpha) d\alpha, \quad \bar{u}_\alpha := \left\{ \begin{array}{ll} 1, & u(x) > \alpha, \\ 0, & u(x) \leqslant \alpha. \end{array} \right.$$

- Also: Choquet integral, Lovász extension, levelable function,...
- Consequence: Global *integral* minimizer for a.e. α ,

$$f(\bar{u}_{\alpha}^*) = f(u^*).$$

This talk: multi-class generalization.

Rounding – Multi-Class Case

Probabilistic interpretation:

$$f(u) = \int_0^1 f(\bar{u}_\alpha) d\alpha = \mathbb{E}_\alpha f(\bar{u}_\alpha).$$

- Rounding step $u \mapsto \bar{u}_{\alpha}$ does not increase f in the mean
- Multi-class generalization (approximate generalized coarea formula):

$$(1+\delta)f(u) \geqslant \int_{\Gamma} f(\bar{u}_{\gamma})d\mu(\gamma) = \mathbb{E}_{\gamma}f(\bar{u}_{\gamma})$$

- Need to define:
 - parameter space Γ
 - parametrized rounding method $u\mapsto ar{u}_\gamma$
 - probability measure μ on Γ
 - bound δ independent of input

Algorithm 1 (Randomized Rounding in BV)

- 1. Input: $u^0 \in \mathsf{BV}(\Omega, \Delta_L)$
- 2. For $k = 1, 2, \ldots$

3. Sample
$$\gamma^k = (i^k, \alpha^k) \in \{1, \dots, L\} \times [0, 1]$$
 uniformly

4.
$$u^k \leftarrow e^{i^k} \mathbf{1}_{\{u_{i^k}^{k-1} > \alpha^k\}} + u^{k-1} \mathbf{1}_{\{u_{i^k}^{k-1} \le \alpha^k\}}$$

5. **Output:** Limit \bar{u} of (u^k)

• Parameter space: sequences $\gamma \in \mathsf{\Gamma} := (\{1,\ldots,L\} imes [0,1])^{\mathbb{N}}$

Optimality - Main Result

Theorem (Optimality)

Let $u \in BV(\Omega, \Delta_L)$, $s \in L^1(\Omega)^L$, $s \ge 0$, $\Psi : \mathbb{R}^{d \times l} \to \mathbb{R}_{\ge 0}$ positively homogeneous, convex and continuous, and $\lambda_l > 0$, $\lambda_u < \infty$ such that

$$\begin{split} \Psi(z = (z^1, \dots, z^L)) & \geqslant \quad \lambda_l \frac{1}{2} \sum_{i=1}^L \|z^i\|_2 \quad \forall z \in \mathbb{R}^{d \times L}, \sum_{i=1}^L z^i = 0, \\ \Psi(\nu(e^i - e^j)^\top) & \leqslant \quad \lambda_u \quad \forall i, j \in \{1, \dots, L\}, \nu \in \mathbb{R}^d, \|\nu\|_2 = 1. \end{split}$$

Then

$$\mathbb{E}f(\bar{u}) \leqslant 2\frac{\lambda_u}{\lambda_l}f(u)$$
 and $\mathbb{E}f(\bar{u}^*) \leqslant 2\frac{\lambda_u}{\lambda_l}f(u_{\mathcal{E}}^*)$

Provides "approximate" generalized coarea formula

Optimality – Metric Labeling

Specially designed V: Local envelope relaxation for metric interaction potentials [Chambolle et al. 08, LellmannSchnörr 10]

▶ For a given metric *d*,

$$\mathbb{E}f(\bar{u}^*) \leqslant 2 \frac{\max_{i \neq j} d(i,j)}{\min_{i \neq j} d(i,j)} f(u_{\mathcal{E}}^*).$$

- Compatible with bounds for finite-dimensional multiway cut, α-expansion, LP relaxation
- Formulated in BV, independent of discretization

Motivation:

- Convex relaxation of multiclass image labeling
- Solutions may be fractional!
- Goal: A priori bounds for rounded solution

Rounding Strategy:

- Probabilistic approach
- Motivated by LP framework

Bounds:

- A priori bound
- Provides approximate generalized coarea formula
- Compatible with finite-dimensional results
- Fully spatially continuous BV framework

Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem

Jan Lellmann, Frank Lenzen, Christoph Schnörr

Image and Pattern Analysis Group Universität Heidelberg

EMMCVPR 2011 St. Petersburg, July 25, 2011

J. Lellmann - Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem

Theorem (Termination)

Let $u \in BV(\Omega, \Delta_L)$. Then (almost surely) Alg. 1 generates a sequence that becomes stationary in some $\bar{u} \in BV(\Omega, \mathcal{E})$.

- Result is in BV
- Independent of data term

Experiments – Iterations

d

Experiments I

ipa

Experiments II

J. Lellmann – Optimality Bounds for a Variat

problem	1	2	3	4	5	6	7	8	9	10
# points	76800	14400	14400	129240	76800	86400	86400	76800	86400	110592
# labels	3	4	4	4	8	12	12	12	12	16
mean # iter.	7.27	7.9	8.05	10.79	31.85	49.1	49.4	49.4	49.7	66.1
a priori ε	1.	1.	1.	1.	1.	1.	1.	1.	1.	2.6332
a posteriori										
- first-max	0.0007	0.0231	0.2360	0.0030	0.0099	0.0102	0.0090	0.0101	0.0183	0.0209
- prob. best	0.0010	0.0314	0.1073	0.0045	0.0177	0.0195	0.0174	0.0219	0.0309	0.0487
- prob. mean	0.0007	0.0231	0.0547	0.0029	0.0138	0.0152	0.0134	0.0155	0.0247	0.0292

J. Lellmann - Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem