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Overview

» Continuous Multi-Class Image Labeling

» Relaxation yields linear data term

» Use weighted variant of total variation on
vector fields as regularizer

» Allows for non-trivial interaction potentials,
can be optimized quickly

» Models Euclidean distance interaction
potentials exactly, non-Euclidan distances
can be approximated

» Globally optimized using Nesterov’s
first-order approach with explicit optimality
bounds

Figure: Application to color segmentation.
Parametrization of the regularizer allows
for selective suppression of background or
foreground structure.

Continuous Problem Formulation

Problem

For each pixel x € 2 C R, find a class label
¢(x) € {1,...,1} according to local data
fidelity and regularization term

=- Combinatorial problem.

Relaxation
Identify the i-th label with ¢’ and relax to the unit simplex in R/, find

inf/ﬂ(u(x), s(x))dx + J(u),

ueC
where C = {u: Q — Rlu;(x) > 0,3, ui(x) = 1} and J penalizes label changes.
= Convex problem for any data term. Formulating J means trading off generality vs.
simplicity of computation.

Total Variation Based Regularizer

Approach
Fix an interface potential 4 : {1, ...,I}* — R and require regularization according to
boundary length with weight depending on labels i and j of adjoining regions,

J(e'1s+ € 1s) = d(i, j)Per(S) (2)

for any set S C 2 with finite perimeter. If J convex, positively homogeneous and
J(u) = 0 for constant u, then d must be a metric.

Euclidean Distances

Idea: Use linear modification of total variation on vectors,

J(u) == TVa(u) = / |D(Aw)|x dx,
Q)
here ||D(-)|| Frobenius norm of the Jacobian and A € R**!. Then
TVA(ei 15 + d lgc) — Hai — CZ]H PGI‘( ) :

If d(i,j) = ||a' — &||, i.e. d is an Euclidean distance, J is exact for hard labeling.

Figure: Euclidean embeddings for several distances into R*: Potts distance, Linear distance,
approximated truncated label distance, distance for foreground-background separation

Approximation of Non-Euclidean Distances

In case d is non-Euclidean, e.g. d(i,j) = min(1,|i — j|): Set D;; = d(i,j)* and compute
Euclidean approximation by minimizing

|E — Dl|pm (5)

over all Euclidean distance matrices E by solving a convex semidefinite program.
Example: truncated linear distance, absolute error bound ¢z = 0.145:
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Discretized Problem

Use forward differences and support function representation of discrete total
variation to get a bilinear saddle point problem:

min max (u, s) + (Lu,v) — (b, V) |

ucC veD
where L discretization of gradient and

C = {l/t GRnXl‘uij. SWAYN = 1,...,71},
D:=][{p=0" .. .P)eR™|[pllr<1} CR™".

xel)

Existence and strong duality follow from boundedness of C, D. Projections onto C, D
can be computed exactly in a finite number of steps.

Optimization

Solve non-smooth problem using
Nesterov's approach [1]

» First-order method: exploit sparsity

» Combines controlled smoothing with
accumulated gradients

» Requires only evaluations of L and
projections onto C, D

» O(1/n) convergence, compared to
O(1/+/n) for subgradient methods

» Explicit suboptimality bound for given

number of iterations, O(¢~'nv/d||A]]) to

find e-optimal solution
» Fully automatic, parameter—iree

Experiments

Algorithm 1 Convex Multi-Class Labeling

1: Input: ¢c; € C,co € Dand 1,72 € Rs.t. C C B, (¢1)
and D C B,,(c2); 2 ¢ C;R>C > ||L|, N € N.
. Output: vV € C, vN) € D.
. Let p %T—l
+1 7ro
. Set GV = 0,01 = 0.
c fork=0,...,Ndo
Ve Tlp (e + & (La®) ).
v® v 4 2Ry Vs
G—s+L'V.
GHF) — G 4 G,

w® T, (xw) _
2] 1, (Cl _u

B+ 2

- end for
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Figure: Convergence for stereo disparity estimation with non-Euclidean distance and 16 disparities:
Objective vs. number of iterations N of our method (solid) compared to the Arrow-Hurwicz method

from [2] (dashed) for various step sizes.

Figure: Four-class color segmentation with
varying distance: Input, proposed method with
Potts, fg-bg, and linear distance. The fg-bg
distance clearly segments the three foreground
classes from the white background but allows
for a large variance within the foreground. The
linear distance corresponds to a degenerate
embedding and results in a strongly suboptimal
discrete solution.
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Figure: Region filling properties: a-6 swap
generates block artifacts. The relaxation yields
a non-binary solution; after binarization the
result is in accordance with the expected
solution.
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Figure: Simultaneous segmentation and
background reconstruction: Noisy image;
background and foreground reconstructed using
a non-uniform distance.

J. Lellmann et al.

Convex Multi-Class Image Labeling by
Simplex-Constrained Total Variation.

In: Scale Space and Variational Methods, LNCS
5567:150-162, 2009.

http://ipa.iwr.uni-heidelberg.de


http://ipa.iwr.uni-heidelberg.de

