

Image & Pattern Analysis

Convex Optimization for Multi-Class Image Labeling

Jan Lellmann and Christoph Schnörr

Image and Pattern Analysis Group, HCI, University of Heidelberg **e-mail:** {lellmann, schnoerr}@math.uni-heidelberg.de

(6)

(7)

(8)

Overview

- Continuous Multi-Class Image Labeling
- Relaxation yields linear data term
- Use weighted variant of total variation on vector fields as regularizer
- Allows for non-trivial interaction potentials, can be optimized quickly
- Models Euclidean distance interaction potentials exactly, non-Euclidan distances can be approximated
- Globally optimized using Nesterov's first-order approach with explicit optimality

Figure: Application to color segmentation. Parametrization of the regularizer allows for selective suppression of background or foreground structure.

Discretized Problem

Use forward differences and support function representation of discrete total variation to get a *bilinear saddle point problem*:

 $\min_{u \in \mathcal{C}} \max_{v \in \mathcal{D}} \langle u, s \rangle + \langle Lu, v \rangle - \langle b, v \rangle,$

where L discretization of gradient and

$$\mathcal{C} := \left\{ u \in \mathbb{R}^{n \times l} | u_{i, \cdot} \in \Delta_l, i = 1, \dots, n \right\},$$
$$\mathcal{D} := \prod_{x \in \Omega} \left\{ p = (p^1, \dots, p^l) \in \mathbb{R}^{d \times l} \mid \|p\|_F \leqslant 1 \right\} \subseteq \mathbb{R}^{n \times d \times l}.$$

Existence and strong duality follow from boundedness of \mathcal{C}, \mathcal{D} . Projections onto \mathcal{C}, \mathcal{D} can be computed exactly in a finite number of steps.

Optimization

Continuous Problem Formulation

Problem

For each pixel $x \in \Omega \subseteq \mathbb{R}^d$, find a class label $\ell(x) \in \{1, \ldots, l\}$ according to *local data* fidelity and regularization term \Rightarrow Combinatorial problem.

Relaxation

Identify the *i*-th label with e^i and relax to the unit simplex in \mathbb{R}^l , find

1**n**

$$\inf_{u \in \mathcal{C}} \int_{\Omega} \langle u(x), s(x) \rangle dx + J(u) , \qquad (1)$$

where $C := \{u : \Omega \to \mathbb{R}^l | u_i(x) \ge 0, \sum_{i=1}^l u_i(x) = 1\}$ and *J* penalizes label changes. \Rightarrow Convex problem for any data term. Formulating J means trading off generality vs. simplicity of computation.

Total Variation Based Regularizer

Approach

Solve non-smooth problem using Nesterov's approach [1]

- First-order method: exploit sparsity
- Combines controlled smoothing with accumulated gradients
- Requires only evaluations of L and projections onto \mathcal{C}, \mathcal{D}
- $\triangleright O(1/n)$ convergence, compared to $O(1/\sqrt{n})$ for subgradient methods
- Explicit suboptimality bound for given number of iterations, $O(\varepsilon^{-1}n\sqrt{d}||A||)$ to find ε -optimal solution
- Fully automatic, parameter—free

Experiments

Algorithm 1 Convex Multi-Class Labeling 1: Input: $c_1 \in C, c_2 \in D$ and $r_1, r_2 \in \mathbb{R}$ s.t. $C \subseteq \mathcal{B}_{r_1}(c_1)$ and $\mathcal{D} \subseteq \mathcal{B}_{r_2}(c_2); x^{(0)} \in \mathcal{C}; \mathbb{R} \ni C \ge ||L||, N \in \mathbb{N}.$ 2: Output: $u^{(\tilde{N})} \in \mathcal{C}, v^{(N)} \in \mathcal{D}.$ 3: Let $\mu \leftarrow \frac{2\|L\|}{N+1} \frac{r_1}{r_2}$. 4: Set $G^{(-1)} = 0, v^{(-1)} = 0.$ 5: for k = 0, ..., N do 6: $V \leftarrow \Pi_{\mathcal{D}} \left(c_2 + \frac{1}{\mu} \left(L x^{(k)} - b \right) \right).$ $v^{(k)} \leftarrow v^{(k-1)} + 2\frac{(k+1)}{(N+1)(N+2)}V.$ $G \leftarrow s + L^{\top}V.$ 9: $G^{(k)} \leftarrow G^{(k-1)} + \frac{k+1}{2}G.$ 10: $u^{(k)} \leftarrow \prod_{\mathcal{C}} \left(x^{(k)} - \frac{\mu}{\|L\|^2} G \right).$ 11: $z^{(k)} \leftarrow \Pi_{\mathcal{C}} \left(c_1 - \frac{\mu}{\|L\|^2} G^{(k)} \right)$ 12: $x^{(k+1)} \leftarrow \frac{2}{k+3} z^{(k)} + \left(1 - \frac{2}{k+3}\right) u^{(k)}.$ 13: **end for**

Fix an interface potential $d : \{1, \ldots, l\}^2 \to \mathbb{R}$ and require regularization according to boundary length with weight depending on labels *i* and *j* of adjoining regions,

$$J(e^{i} 1_{S} + e^{j} 1_{S^{c}}) = d(i, j) Per(S)$$
(2)

for any set $S \subset \Omega$ with finite perimeter. If J convex, positively homogeneous and J(u) = 0 for constant u, then d must be a metric.

Euclidean Distances

Idea: Use linear modification of total variation on vectors,

$$J(u) := \operatorname{TV}_A(u) := \int_{\Omega} \|D(Au)\|_F \, dx \,, \tag{3}$$

here $\|D(\cdot)\|_F$ Frobenius norm of the Jacobian and $A \in \mathbb{R}^{k \times l}$. Then

$$TV_A(e^i 1_S + e^j 1_{S^c}) = ||a^i - a^j|| Per(S).$$

If $d(i,j) = ||a^i - a^j||$, i.e. d is an Euclidean distance, J is exact for hard labeling.

Figure: Euclidean embeddings for several distances into \mathbb{R}^3 : Potts distance, Linear distance, approximated truncated label distance, distance for foreground-background separation

Figure: Convergence for stereo disparity estimation with non-Euclidean distance and 16 disparities: Objective vs. number of iterations N of our method (solid) compared to the Arrow-Hurwicz method from [2] (dashed) for various step sizes.

Figure: Four-class color segmentation with varying distance: Input, proposed method with Potts, fg-bg, and linear distance. The fg-bg distance clearly segments the three foreground classes from the white background but allows for a large variance within the foreground. The

Figure: Region filling properties: α - β swap generates block artifacts. The relaxation yields a non-binary solution; after binarization the result is in accordance with the expected solution.

Figure: Simultaneous segmentation and background reconstruction: Noisy image; background and foreground reconstructed using a non-uniform distance.

Approximation of Non-Euclidean Distances

In case d is non-Euclidean, e.g. $d(i,j) = \min(1, |i-j|)$: Set $D_{ij} = d(i,j)^2$ and compute Euclidean approximation by minimizing

$$\|E-D\|_M$$

over all Euclidean distance matrices E by solving a convex semidefinite program. *Example:* truncated linear distance, absolute error bound $\varepsilon_E = 0.145$:

(0 1 2 2)		$(0 \ 1.15 \ 1.92 \ 2.08)$
1012		1.15 0 1.15 1.92
2 1 0 1	v5.	1.92 1.15 0 1.15
$(2 \ 2 \ 1 \ 0)$		2.08 1.92 1.15 0

linear distance corresponds to a degenerate embedding and results in a strongly suboptimal discrete solution.

References

Y. Nesterov.

(4)

(5)

Smooth minimization of non-smooth functions. Math. Prog., 103(1):127–152, 2004.

A. Chambolle, D. Cremers, and T. Pock. A convex approach for computing minimal partitions.

Technical Report 649, Ecole Polytechnique CMAP, 2008.

J. Lellmann et al.

Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation. In: Scale Space and Variational Methods, LNCS 5567:150-162, 2009.

Image and Pattern Analysis Group, University of Heidelberg

http://ipa.iwr.uni-heidelberg.de