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Overview

I Continuous Multi-Class Image Labeling
I Relaxation yields linear data term
I Use weighted variant of total variation on

vector fields as regularizer
I Allows for non-trivial interaction potentials,

can be optimized quickly
I Models Euclidean distance interaction

potentials exactly, non-Euclidan distances
can be approximated

I Globally optimized using Nesterov’s
first-order approach with explicit optimality
bounds

Figure: Application to color segmentation.
Parametrization of the regularizer allows
for selective suppression of background or
foreground structure.

Continuous Problem Formulation

Problem
For each pixel x ∈ Ω ⊆ Rd, find a class label
`(x) ∈ {1, . . . , l} according to local data
fidelity and regularization term
⇒ Combinatorial problem.

Relaxation
Identify the i-th label with ei and relax to the unit simplex in Rl, find

inf
u∈C

∫
Ω

〈u(x), s(x)〉dx + J(u) , (1)

where C := {u : Ω→ Rl|ui(x) > 0,
∑l

i=1 ui(x) = 1} and J penalizes label changes.
⇒ Convex problem for any data term. Formulating J means trading off generality vs.
simplicity of computation.

Total Variation Based Regularizer

Approach
Fix an interface potential d : {1, . . . , l}2 → R and require regularization according to
boundary length with weight depending on labels i and j of adjoining regions,

J(ei 1S + ej 1Sc) = d(i, j)Per(S) (2)

for any set S ⊂ Ω with finite perimeter. If J convex, positively homogeneous and
J(u) = 0 for constant u, then d must be a metric.
Euclidean Distances
Idea: Use linear modification of total variation on vectors,

J(u) := TVA(u) :=

∫
Ω

‖D(Au)‖F dx , (3)

here ‖D(·)‖F Frobenius norm of the Jacobian and A ∈ Rk×l. Then

TVA(ei 1S + ej 1Sc) = ‖ai − aj‖Per(S) . (4)

If d(i, j) = ‖ai − aj‖, i.e. d is an Euclidean distance, J is exact for hard labeling.

Figure: Euclidean embeddings for several distances into R3: Potts distance, Linear distance,
approximated truncated label distance, distance for foreground-background separation

Approximation of Non-Euclidean Distances

In case d is non-Euclidean, e.g. d(i, j) = min(1, |i− j|): Set Dij = d(i, j)2 and compute
Euclidean approximation by minimizing

‖E − D‖M (5)

over all Euclidean distance matrices E by solving a convex semidefinite program.
Example: truncated linear distance, absolute error bound εE = 0.145:

0 1 2 2
1 0 1 2
2 1 0 1
2 2 1 0

 vs.


0 1.15 1.92 2.08

1.15 0 1.15 1.92
1.92 1.15 0 1.15
2.08 1.92 1.15 0



Discretized Problem

Use forward differences and support function representation of discrete total
variation to get a bilinear saddle point problem:

min
u∈C

max
v∈D
〈u, s〉 + 〈Lu, v〉 − 〈b, v〉 , (6)

where L discretization of gradient and

C := {u ∈ Rn×l|ui,· ∈ ∆l, i = 1, . . . , n} , (7)
D :=

∏
x∈Ω

{
p = (p1, . . ., pl)∈Rd×l | ‖p‖F61

}
⊆Rn×d×l . (8)

Existence and strong duality follow from boundedness of C,D. Projections onto C,D
can be computed exactly in a finite number of steps.

Optimization

Solve non-smooth problem using
Nesterov’s approach [1]
I First-order method: exploit sparsity
I Combines controlled smoothing with

accumulated gradients
I Requires only evaluations of L and

projections onto C,D
I O(1/n) convergence, compared to

O(1/
√

n) for subgradient methods
I Explicit suboptimality bound for given

number of iterations, O(ε−1n
√

d‖A‖) to
find ε-optimal solution

I Fully automatic, parameter–free

Experiments
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Figure: Convergence for stereo disparity estimation with non-Euclidean distance and 16 disparities:
Objective vs. number of iterations N of our method (solid) compared to the Arrow-Hurwicz method
from [2] (dashed) for various step sizes.

Figure: Four-class color segmentation with
varying distance: Input, proposed method with
Potts, fg-bg, and linear distance. The fg-bg
distance clearly segments the three foreground
classes from the white background but allows
for a large variance within the foreground. The
linear distance corresponds to a degenerate
embedding and results in a strongly suboptimal
discrete solution.

Figure: Region filling properties: α-β swap
generates block artifacts. The relaxation yields
a non-binary solution; after binarization the
result is in accordance with the expected
solution.

Figure: Simultaneous segmentation and
background reconstruction: Noisy image;
background and foreground reconstructed using
a non-uniform distance.
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