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1. Optimality bounds for convex labelling



Motivation — Problem

> Labeling problem:

i
QO — =
e W ((z) =2

26wt

» Partition image domain Q into L regions

» Discrete decision at each point in continuous domain Q

» Variational Approach:

min / S(U(x), x)dx+ ()
l Q ~—~
regularizer
local data fidelity
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Model — Multi-Class Labeling

» Multi-class relaxation: [Lie et al. 06, Zach et al. 08, Lellmann et al. 09, Pock et al. 09]

u(z) = (0,1,0)

22 /_\..

@ @ A CR

> Embed labels into RE as € := {e!,..., e}, relax integrality
constraint to the unit simplex:

A= {x eRtx > O,Zx,- =1} =convé,

min  f(u), f(u):= /Q<u(x),s(x)>dx+/Q\IJ(Du)

WEBV(Q,A,)

» Advantages: No explicit parametrization, rotation invariance, convex
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Model — Envelope Relaxation

» J(¢): Weight boundary length by interaction potential d(i,j)

> 77/) Imp|IC|t|y defined for giVen d [Chambolle/Cremers/Pock '08,Lellmann/Schnoerr '10] —
metric labeling.

J(u) = sup/(Du, v) :/O'DIOC(DU),
veD JQ QN>——
V(Du)
D = {ve (Cé’o)dXL|v(x) € Dioc Vx € Q},
Dioe = {(vi,...,vh) e RV — V| < d(i,j) Vi j}.

» Primal formulation, connections to local polytope (zach/Hane/Poliefeys '12]
» Quantized but versatile, on-/offline methods to reduce constraints

[Chambolle/Cremers/Pock '12, Lellmann et al. '13]
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Model — Rounding

» Fractional solutions may occur:

» Goal: Find rounding scheme u* — 1* : Q — {el,..., e} such that
f( u* ) < Cf( ug ).

~—

rounded relaxed solution best integral solution

for some C > 1.
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Rounding — Generalized Coarea Formula

» Two-class case: Generalized coarea formula [strang '3, Chan/Esedoglu/Nikolova ‘06,

Zach et al. 09, Olsson et al. 09]

1 1 N
fu) = /Of(av)dy, I, ;:{ € ur(x) >,

e, ui(x) <.

» Also: Choquet integral, Lovdsz extension, levelable function,...
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Rounding — Multi-Class Case

» Probabilistic interpretation:

1
flu) = /0 F(8y)dy = Ba f()

» Rounding step u > @i, does not increase f in the expectation

» Consequence: global integral minimizer for a.e. !  [chan/Esedoglu/Nikolova 06]
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Rounding — Approximate Coarea Formula

» Multi-class generalization (approximate generalized coarea formula):

CFu) > / F(3,)du(7) = Eyf(3)

» Rounding step u +— @i, does not increase f too much in the
expectation

» No bounds for individual ~!

UNIVERSITY OF
CAMBRIDGE J. Lellmann — Convexity and Non-Convexity in Partitioning and Interpolation Problems 8



Rounding — Multi-Class Case

» Multi-class generalization (approximate generalized coarea formula):

CHu) > [ F(2.)dn(r) = B F()

» Need to define:
> parameter space I’
parametrized rounding method u — T,

>
» probability measure y on I
» bound C independent of input
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Optimality — Example
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Optimality — Randomized Rounding

Algorithm 1 (Randomized Rounding in BV)

1. Input: u® € BV(Q,A))

2. Fork=1,2,...

3. Sample vk = (ik, o) € {1,..., L} x [0,1] uniformly
K { eik, u,.kk_1 > ak,

4. u +— _
uk_l, ufk ! < ak.

5. Output: Limit o of (u¥)

» Parameter space: sequences v € I := ({1,..., L} x [0, 1])N
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Optimality — Termination

Theorem (Termination)

Let u € BV(Q2,AL). Then (almost surely) Alg. 1 generates a sequence
that becomes stationary in some & € BV(£2, ).

» Result is in BV

» Independent of data term
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Randomized Rounding — Motivation

> In finite-dimensional setting: Can show for uniform metric

[Kleinberg/Tardos '02].

. f(T,) < 2f (u).

» Similar bounds:

> multiway cut [Dahihaus et al. '04]
> (-expansion  [Boykov et al. '01]
» LP relaxation [Komodakis/ Tziritas '07]
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Optimality — Proof

E = {x € Qux > ¥}
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Optimality — Proof

E = {x € Qux > ¥}

ext B

int F

| ‘H | | bnd F

UNIVERSITY OF
CAMBRIDGE J. Lellmann — Convexity and Non-Convexity in Partitioning and Interpolation Problems

14



Optimality — Proof

E = {x € Qux > ¥}

ext B

int F
1 o

R™": J(u) < Jinte(u) + J]ext e(u) + c Per(E)
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Optimality — Proof

E = {x € Qux > ¥}

ext B

int £/
| H | | bnd F

R™": J(u) < Jinte(u) + J]ext e(u) + c Per(E)

BV(Q) : [1(Du)|(Q) < [ (Du)l(E") + [(Du)|(E°) + ¢ Per(E),

(B) = {x el lim B DEL 0.1

N [By(x)]
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Optimality — Main Result

Theorem (Optlmahty [Lellmann‘,/"Lenzen‘,J"Schnoerr'11])
Let u € BV(Q,AL), s € L®(Q)L, s > 0, d metric. Then

R d ', H ~ : d .7 g .
maXigg ) ey and EA(E) < 2 90 gy

Ef(o) < 2— = - = .
(U) min;; d(l,_/) min;; d(l,_/) £

» Provides “approximate” generalized coarea formula

» Compatible with bounds for finite-dimensional multiway cut,
a-expansion, LP relaxation

» Formulated in BV, independent of discretization, true a priori bound
independent of problem instance
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Discretization — Issues

» Discretization affects geometry and integrality
‘ . :

» Questions:

» Consistency
> |sotropy
» Convergence

» Not only asymptotic!
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Discretization — Finite Differences

v

pairWise LP (Il4, n8, n16) [Boykov/Kolmogorov '03]

v

forward differences (fd-fw), symmetrized (fd-sym) — often used
» staggered grid (center)
> UpWind ﬁrSt-/SeCOHd—Ol’der (upl,up2) [Rickett/Fomel '11, Chambolle/Levine/Lucier "11]

» CCMF (ccmf-d), dual (ccmf-p) (couprie et al. 117, mimetic (mi-d), dual
(mi=p) (Hyman/Shashkov 97, Yuan/Schnirr/Steidi '00] — dual constraints non-separable

v

Also: finite elements — need adaptive mesh [negio0), dual methods

UNIVERSITY OF
CAMBRIDGE J. Lellmann — Convexity and Non-Convexity in Partitioning and Interpolation Problems 17



Discretization — Isotropy

> Isotropy
J
5.20 r na
L == n8
515 L = N16
= fd—fw
= fd—sym
5.10 — centered
upl
5057 " up2
’ ccmf —p
= ccmf —d
5.00 mi—p
== mi—d
(03
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Discretization

AN AN AN AN AN AN AN AN 4

- - true
n4
= n8
= nl6
= fd—fw
= fd—sym
== centered
upl
== up2
ccmf -p
== ccmf —d
mi—p
== mi—d
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» Minimizers for rotationally symmetric data term:

fd-fw (fd-fw) fd-sym (fd-sym)

center upl ccmf-p ccmf-d

(WquF)
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» Minimizers for rotationally symmetric data term:

n4 n8 nl6

fd-fw (fd-fw) fd-sym (fd-sym)
(Wulff)
100.00 100.00 100.00 94.71 100.00 93.33 100.00
center upl up2 ccmf-p ccmf-d
97.19 96.44 94.17 89.21 96.66 92.02 96.24

» Criterion: values closer than 0.05 to {0,1}
» Centered differences most precise
» Much less exaggerated on real-world data

UNIVERSITY OF
CAMBRIDGE J. Lellmann — Convexity and Non-Convexity in Partitioning and Interpolation Problems 20



2. Non-convex surface interpolation



Surface interpolation

» Input: (parts of) contour lines

» Qutput: dense surface

» Variational approach:

min_R(u), s.t. u(x) = up(x) for x € C.
u:Q—R
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Digital elevation map

» Standard regularizers highly unlikely to work
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Challenges — 1

» Challenges:
» contour lines can have non-differentiabilities/high curvature, these are
features and should be preserved!
» data can be irregular/sparse — regularizer is much more important
» discretization has large influence (also: boundary conditions)

ﬁ/
N

/)
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Related work

» Goal: sparse data, no explicit parameterization, at least continuous,
sharp ridges, function space domain
> Related methods:

Explicit parameterisation [Meyers et al. *92, Masnou/Morel '98, Hormann et al. *03, Meyer '11]
Geodesic distance transform [seille ‘1]

Membrane, thin plate spline [puchon '76] — Smooth contours

Krlglng [Matheron '71, Stein '99]

Anisotropic Diffusion [pesbrun 00}, Of normals [Tasdizen '02]

Total curvature [Eisey/Esedoglu '07]

Implicit representation [veetal. '10], higher-order TV [Lai/Tai/Chan 11]
AbSOIUtely |\/||n|m|Z|ng LipSChitZ Extension [Alvarez et al.’93, Caselles et al. '98] —
D?u(Du/|Du|, Du/|Dul) = 0,

> many more...

vV VY VY VY VY VvYY
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Classic approaches

» Smoothed-out contours

input quadratic TV?2 TV3

» convex?
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Challenges — 2

> |s convex regularization enough?
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Auxiliary vectors

» Need to introduce non-convexity
» Contours are similar
» Smooth across level lines — vector field v associates points on contours

» Introduce anisotropy:

RO (u) i= /Q 1D%u(v, -, )ll, R () := /Q 1D%u(v, v, ), R () 1= /Q ID3u(v, v, V),
RD .= /Q 1D?u(v, )], R = /Q 1D?u(v, V)|
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Known vector field

» Known v:

input AMLE | D?u|| | D3u|]

<

1D2u(v, ), D2u(v, V)| [[D2u(v, )l ID3u(v, v, )l |D*u(v, v, v)
» v = Du/|Dul| is not enough (AMLE)
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Ambiguities

» Resolves ambiguities:

input 1Dl D3l

ID?u(v, )| [D3u(v, ) [D3u(v, v, )]l

1D?u(v, )l I1D3u(v, -, ) 1D3u(v, v, )]l
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» Idea: v locally points into direction where normal to contour line
changes least — assume contour lines are locally only translated:

v(x) = arg min ||K;*(D(Du/|Dul))(x)w]|2.

W7||W||2:1

» Enforce regularity where u is almost planar, decrease where v is
accurate: normalize and solve

1
min 5 [ wblv/() ~ v I3ax+ 5 [ 1Dv/(x) B
1% Q Q

where w(x) is largest singular value of K, x (D(Du/|Dul))(x).

» For unknown u, start with a random field v° (almost isotropic) and
alternate between computing u* and v¥
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Adaptive choice of v

» Still sharp edges, ambiguities are correctly resolved

original AMLE ID?ul| [ID3ul|

HD2LI(V,')||, |D2U(V7 V)| ||D3U(V7"')|I ||D3U(V, Vv')H |D3U(V7 v, V)
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Discretization

» Sensitive to discretization — use staggered grid:

B | |
| u | U222 | |
S S U2 N T
U2
U2 u112
U111
| el | |
| [
U11 D2u
U2z u
12
I
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Real-world results

» “Bull mountain” from National Elevation Dataset [Gesch et al. '09]

input 1D u D3]]

AMLE ID3u(v, -, )| ground truth
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Real-world results
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Real-world performance

» L2 distance

#  quadratic  AMLE  TV®) R®) RY) rY) V@) r® R

1 14157 13815 1510 845 1000 1446 3050 1880  25.64

2 9555 8301 1361 1110 1341 2128 2520 1018 28.74

3 20206  235.86 2061 2875 3342 5023 8471 4334  07.27

4 7933 56.36 1893 850 1034  13.74 2604 1335 2141

5 10376 88.91 3447 1703 2196 2623 4384 2310 2853

» L2 distance of normals

#  quadratic  AMLE VO R®) R RY) Tv@) R R
1 1088 1533 346 212 2.43 2.95 432 33 5.49
2 2173 2204 6.66 577 704 1085 9.45 907 1371
3 2096 4201 1067 1049 1264 1012 1532 1502 2174
4 1328 1139 534 331 374 476 678 444 663
5 986 1036 500 3.5 374 465 577 441 5.68
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Conclusion

» Convex relaxation with optimality bound
» Probabilistic a priori bound

» Approximate generalized coarea formula

Chu) > / F(3)dpu(y) = Eo F(3)

» Non-convex variational surface interpolation
> Interesting problem, highlights properties of
regularizers

» Robust method to find surface and association
between level lines
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Reducing Metrics — Cyclic

» Shortest-path representation: d(i,j) = shortest_path(G,i,;)

» Continuous analogue: TVg:1 for angular/orientation data

[StrekalovskiyCremers2011]

R
B
Q
B
<1
o
B

reduced completion

ori
012321 01 ®oo o1 012321
101232 101 ® oo 101232
210123 @1 01 oo 210123
321012 ol 01 » 321012
232101 @ ool 01 232101
123210 1l ®wwolO 123210
2 T 2 T
1 2 1 1 1
7 3 3 7
1 1 1 )
4 T S S 4 T
15 6 15

» Can automatically reduce number of constraints: O(n?) — O(n)

[Lellmann et al. '13]
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» Separable metric (uniform/Potts)

)) = 11'1#]1 + 1"275]2

d((ila i2)a (jlv./2

original

completion

reduced

221222122212
222122212221

®@@1 1110

a8

(still n? labels)

O(n*) — 0(n%)
» Also on-the-fly techniques, computationally efficient

» Reduction

[Chambolle/Cremers/Pock '12]
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