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Abstract. Multi-class labeling is one of the core problems in image
analysis. We show how this combinatorial problem can be approximately
solved using tools from convex optimization. We suggest a novel func-
tional based on a multidimensional total variation formulation, allow-
ing for a broad range of data terms. Optimization is carried out in the
operator splitting framework using Douglas-Rachford Splitting. In this
connection, we compare two methods to solve the Rudin-Osher-Fatemi
type subproblems and demonstrate the performance of our approach on
single- and multichannel images.

1 Introduction

In this paper, we study the variational approach

inf
u∈C

f(u) , f(u) = −
∫

Ω

〈u(x), s(x)〉dx + λ TV(u) , λ > 0 , (1)

for determining a labeling u : Ω → R
L, that is a contextual classification of

each pixel x ∈ Ω into one out of L classes, based on an arbitrary vector-valued
similarity function s(x) ∈ R

L as input data that has been computed from image
data beforehand.

The objective function (1) comprises the common form of a data term plus
a regularization term. The data term is given by the L2 inner product of the
assignment variables u and the similarity function s, and the regularizer is a
total variation (TV) formulation for vector-valued data,

TV(u) =

∫

Ω

√

‖∇u1‖2 + · · · + ‖∇uL‖2dx . (2)

Furthermore, the constraint u ∈ C restricts the vector field u(x) at each loca-
tion x ∈ Ω to lie in the standard probability simplex, that is u(x) ∈ R

L
+ and

∑L
i=1

(
u(x)

)

i
= 1 for all x ∈ Ω.

Our work is motivated by the following observation. Suppose that at each
pixel x ∈ Ω, there is an unambiguous assignment (labeling) of the data s(x)
to some class l ∈ {1, . . . , L} represented by the corresponding l-th unit vector,
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Fig. 1. Left: Noisy input image. Right: The labeled image based on the non-binary
assignment u as global minimizer of the convex approach (1). The discrete problem is
accurately solved by a continuous approach.

u(x) = el. Then, an interface with area A between two image regions labeled
with l and l′, respectively, adds A

√
2 to the regularization term iff l 6= l′, as

all but two gradients under the square root vanish. As a result, under these
assumptions and up to the immaterial constant

√
2, the TV term corresponds

to the well-known Potts model that assigns constant penalties to local changes
of the labeling.

A significant difference between the Potts model and our approach (1), how-
ever, is that the former amounts to solve a discrete combinatorial problem,
whereas the latter is a continuous convex optimization problem. Experiments
show that our approach (1) approximates discrete decisions fairly well (Fig. 1
and 2) by computing a global optimum to a single convex optimization problem.
By contrast, the state-of-the-art discrete approach [1] approximates the combi-
natorial solution by solving a non-uniquely defined sequence of binary problems
via graph cuts. This fact, along with the potential of continuous convex optimiza-
tion for parallel implementations and their more robust dependency on (hyper-)
parameters, motivated to investigate the approach (1) as a promising model for
a general “labeling submodule” within computer vision systems. To this end,

– We have a closer look at the data and regularization terms (section 2).
– We apply an operator splitting approach to (1) in order to decompose the

computation of a globally optimal labeling into two independent compu-
tational steps: TV denoising for vector-valued data, and projection of the
labeling vectors u(x) on the canonical simplex (section 3).

– We evaluate two different algorithms for the TV denoising subroutine (sec-
tion 4) and compare the performance of our convex method to a range of
established graph cut-based approaches (section 5).

Related work. In contrast to the binary case with anisotropic discretization [2],
multi-class energies are generally not submodular and thus cannot be optimized
globally using graph cuts [3]. Some extensions exist, which find a local minimum
by solving a sequence of binary graph cuts [1]. The continuous formulation –
optimization on the set of characteristic functions – is known as continuous cut

[5]. Chan et al. [6] showed that this problem can be relaxed and solved on a
convex set, without losing global optimality. In contrast, our work is aimed at
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Fig. 2. Output of the standard TV approach [4] for scalar-valued images applied to the
noisy input image depicted in Fig. 1, for different values of the regularization parameter
λ. Irrespective of this value, the performance is worse than with the approach (1)
(cf. Fig. 1, right), because the latter approximates the Potts model that does not

depend on the size (contrast) of discontinuities. Consequently, the former approach
cannot remove noise without degrading weak discontinuities, as is apparent above for
the horizontal discontinuities.

the multi-class case. In [7], a comparable approach based on [8] was presented,
which relies on a natural ordering of the labels, as given in e.g. stereo reconstruc-
tion. An approach very similar to ours was recently presented in [9], where the
authors use a different formulation of the total variation on vector fields, and
an alternating optimization method. The (discrete) Potts model was studied
in [10], where approximate solutions were computed by an LP relaxation with
explicit constraints. In contrast, our approach considers the general TV term
and a problem decomposition into efficiently solvable subproblems, without the
need to introduce additional variables.

Notation. We consider the discretized version of our approach (1). Let Ω =
{1, . . . , n1} × · · · × {1, . . . , nd} ⊆ R

d , d ∈ N, denote a regular image grid of
n := |Ω| pixels. The (multidimensional) image space X := R

n×L is equipped
with the Euclidean inner product 〈·, ·〉Ω over the vectorized elements. We nat-
urally identify v = (v1, . . . , vL) ∈ R

n×L with ((v1)⊤ · · · (vL)⊤)⊤ ∈ R
nL. Su-

perscripts vi denote a collection of vectors, while subscripts vk denote vector
components. Using the notation e = (1, 1, . . . , 1)⊤, the standard simplex on R

L

and its extension C on R
n×L are given by ∆L :=

{
v ∈ R

L
∣
∣ v ≥ 0 , 〈e, v〉 = 1

}

and C :=
∏

x∈Ω ∆L. Define δC(x) to be 0 iff x ∈ C, and +∞ otherwise.

Let grad := (grad⊤

1 , . . . , grad⊤

d )⊤ be the d-dimensional forward difference gra-
dient operator for Neumann boundary conditions. Accordingly, div := −grad⊤ is
the backward difference divergence operator for Dirichlet boundary conditions.
These operators extend to R

n×L via Grad := (IL ⊗ grad), Div := (IL ⊗ div),
where IL is the L × L identity matrix. We will also need the convex sets

Bλ :=
{

(p1, . . . , pL) ∈ R
d×L

∣
∣
∣

( L∑

i=1

‖pi‖2
2

) 1

2

6 λ
}

, (3)

Dλ :=
∏

x∈Ω

Bλ ⊆ R
n×d×L , Eλ := {u ∈ R

n×L|u = Div p , p ∈ Dλ} . (4)



The discrete total variation on vector-valued data is then defined as

TV(u) := σE1
(u) =

∑

x∈Ω

‖Gxu‖2 , (5)

where σM (u) := supp∈M 〈u, p〉 is the support function from convex analysis, and
Gx is an (Ld)×n matrix composed of rows of (Grad) s.t. Gxu gives the gradients
of all ui in x stacked one above the other.

2 Variational Approach

Based on the introduced notation, our novel approach (1) reads

inf
u∈C

f(u) , f(u) = −〈u, s〉Ω
︸ ︷︷ ︸

data term

+ λ TV(u)
︸ ︷︷ ︸

regularization term

, λ > 0 , (6)

As the objective function f and the constraint set C are convex, the overall
problem is convex as well. We will now define and motivate each term.

Data Term. The data term in (6) is fairly general. Any vector-valued similarity
function s can be used, whose components

(
s(x)

)

i
indicate the affinity of some

data point at x with class i. As an example, suppose we have image features
g(x), x ∈ Ω, prototypical feature vectors G = (G1, . . . , GL) as well as a distance
measure d on the features. We might think of g as a grayscale image, of G as
some prototypical gray values, and of d as a quadratic distance measure, possibly
derived from a statistical noise model.

The hard assignment of the pixel x ∈ Ω to a label (or class) l(x) ∈ {1, . . . , L}
should then be penalized by the distance d(g(x), Gl(x)) of the corresponding
feature to the prototype of the assigned class. Denoting the negative distance
by s, and summing up over the image domain, we see that

∑

x∈Ω

d
(

g(x), Gl(x)
)

= −
∑

x∈Ω

〈
s(x), u(x)

〉
for u(x) = el(x) . (7)

Thus, instead of looking for l ∈ {1, . . . , L}n, we may equivalently look for u ∈
{e1, . . . , eL}n. However, the right hand side formulation has the advantage that
it extends naturally to the soft assignment u ∈ C: We may now solve the easier
problem of optimizing for u on the convex set C.

In our experiments, we chose d(x, y) = ||x − y||1, as the ℓ1-norm is still
convex but known to be more robust against noise and outliers. However, s is
not restricted to representing distances. In fact, it may be arbitrarily nonlinear
and nonconvex in x and g, and involve nonlocal operations on g. The complexity
is completely hidden within the precomputed vector s.

Regularization Term. Recall that the regularizer of (6) is defined (5) as

TV(u) = sup
p∈D1

〈u,Div p〉 =
∑

x∈Ω

‖Gxu‖2 . (8)



This definition for vector-valued u parallels the definition of the “isotropic” to-
tal variation measure in the scalar-valued case [11, 4, 12]. It is also known as
MTV [13–15], and was recently studied in [16] in its continuous formulation.
Contrary to the anisotropic discretization, where one would substitute the sum
of 1-norms in (3), it is less biased towards edges parallel to the axes. See also [17]
for an overview of TV-based research and applications.

Optimality. After solving the relaxed problem, it remains to show that a binary
solution can be recovered. For the continuous, binary case, Chan et al. [6] showed
that an exact solution can be obtained by thresholding at almost any threshold.
However, their results do not immediately transfer to the discrete multi -class
case. In particular, the crucial “layer cake” formula holds for ℓ1-, but not ℓ2
discretizations of the TV.

Contrary to the binary case, it is not clear which rounding scheme to use
for vector-valued u. For our experiments, we chose the final class label for each
pixel x as the index l of the maximal u∗

l (x) of the global optimum u∗ of (6).
This defines a suboptimal discrete solution u∗

t . Bounding the error f(u∗
t )−f(u∗

d)
with respect to the unknown discrete optimum u∗

d will be subject of our future
work.

3 Optimization

Two basic problems arise concerning the optimization of (6): Nondifferentiability
of the objective function due to the TV term, and handling of the simplex
constraint u ∈ C. We cope with the latter using the tight Douglas-Rachford

splitting method as presented in the following section. We refer to [18] for the
full derivations.

Douglas-Rachford Splitting. Minimization of a proper, convex, lower-semi-
continuous (lsc) function f : X → R can be regarded as finding a zero of its
(necessarily maximal monotone [19, Chap. 12]) subgradient operator T := ∂f :
X ⇉ X. In the operator splitting framework, ∂f is assumed to be decompos-
able into the sum of two “simple” operators, T = A + B, of which forward
and backward steps can practically be computed. Here, we consider the (tight)
Douglas-Rachford-Splitting iteration [20, 21],

zk+1 ∈ (JτA(2JτB − I) + (I − JτB))(zk) , (9)

where JτT := (I +τT )−1 is the resolvent of T . Under the very general constraint
that A and B are maximal monotone and A + B has at least one zero, the
sequence (zk) will converge to a point z, with the additional property that x :=
JτB(z) is a zero of T ([22, Thm. 3.15], [22, Prop. 3.20], [22, Prop. 3.19], [23]).

In particular, for f = f1 + f2, fi proper, convex, lsc with ri(dom f1) ∩
ri(dom f2) 6= ∅ (ri(S) denoting the relative interior of a set S), it can be shown
[19, Cor. 10.9] that ∂f = ∂f1 + ∂f2, and the ∂fi are maximal monotone. As
x ∈ Jτ∂fi

(y) ⇔ x = argmin(2τ)−1‖x − y‖2
2 + fi(x), the computation of the re-

solvents reduces to proximal point optimization problems involving only the fi.



Application. For our specific problem, we split

inf
u∈C

(f1(u) + f2(u)) , f1(u) = −〈u, s〉Ω + λTV(u) , f2(u) = δC(u) . (10)

and get the following Douglas-Rachford scheme:

Algorithm 1 Outer loop (Douglas-Rachford)

1: choose some u0 and a fixed step size τ > 0
2: repeat

3: solve uk ← argminu{
1

2τ
‖u− zk‖2 − 〈u, s〉+ σEλ

(u)}

4: solve wk ← argminw{
1

2τ
‖w − (2uk − zk)‖2 + δC(w)}

5: zk+1 ← zk + wk − uk

6: until ‖uk − uk−1‖∞ 6 δouter.

As f is bounded from below on the compact set C and thus attains its minimum.
From the remarks in the last section, we get convergence of the scheme for the
discrete case: δC(w) and σEλ

are both proper, convex, lsc with domσEλ
= R

n

and ri(C) 6= ∅. In practice, one has to deal with solutions of the subproblems
with limited accuracy. While there are extensions of the convergence result that
take these inexact solutions into account [22, Prop. 4.50], they require the sub-
problems to be solved with increasing accuracy. However, we found that the
method generally converged even though these requirements were not met.

4 Inner Loop Optimization

The second subproblem (Alg. 1, step 4) is a projection on the constraint set,
wk = ΠC(2uk − zk), which requires one projection on the low-dimensional unit
simplex ∆L per x ∈ Ω. These projections can be computed in a finite number
of steps [24]. The first subproblem (step 3) is equivalent to

uk = argminu

1

2
‖u − (zk + τs)‖2 + (τλ)TV (u), (11)

i.e. an extension to vector vector-valued u of the classical Rudin-Osher-Fatemi
(ROF, TV-L2) problem with regularization parameter τλ. Many methods have
been suggested to solve the ROF problem, e.g. PDE, fixpoint, or interior point
methods for primal [4, 25], dual [26–28], or mixed [29] formulations.

We evaluate two approaches: First, we will formulate a particularly simple
gradient projection method in the operator splitting framework, cf. [30]. This
scheme was introduced in [27] and extended to the multidimensional case in [31]
(see also [16]). The second approach is based on the fast half-quadratic method
of Yang et al. [15].

Forward-backward approach. The optimality condition of step 3, τ−1(zk −
u) + s ∈ ∂σEλ

(u), can be rewritten as u = τ
((

zk/τ + s
)
− ΠEλ

(
zk/τ + s

))
. To

compute the projection ΠEλ
, we use the dual representation,

ΠEλ
(x) = argmin

q∈Eλ

1

2
‖q − x‖2

Ω = Div

{

argmin
p

1

2
‖Div p − x‖2

Ω + δDλ
(p)

}

. (12)



Using a simple forward-backward splitting for the inner problem results in the
(gradient projection) update rule

pj+1 = ΠDλ

(

p − νDiv⊤ (Div p − x)
)

.

The projection ΠDλ
can be computed explicitly and is separable in x, while the

inner part can be computed for all models independently. This opens up the
method to parallelization.

Convergence is guaranteed for ν < 2/‖Div⊤Div‖ (see e.g. [22, Thm. 3.12]).
Extending the argument in [26, Thm. 3.1], we find that ‖div‖ 6

√
4d. Accord-

ingly, we may set ν < 1
2d . In our experiments, we set ν = 0.95

2d to avoid numerical
problems close to the theoretical maximum. Wrapping up, we have

Algorithm 2 Inner loop, forward-backward approach

1: x← zk

τ
+ s, choose arbitrary p0 ∈ R

n×d×L

2: repeat

3: pj+1 = ΠDλ
(pj − νDiv⊤(Div p− x))

4: until ‖pj+1 − pj‖∞ 6 δinner

5: uk ← τ(x−Div pj+1).

Half-quadratic approach. While the forward-backward method is simple and
easy to implement, its convergence speed is in practice not satisfactory. As an
alternative, we tested an ROF specialization of the general multichannel image
restoration method by Yang et al. [15]. Starting from (11), the problem is to find

uk = argminug(u) , g(u) :=
µ

2
‖u − f‖2 + TV (u) , (13)

where µ := 1
τλ and f := zk + τs. Using a half-quadratic approach [32, 33], Yang

et al. derive the splitting/penalty formulation

(u, y) = argmin
yx∈RLd,x∈Ω,u∈RnL

∑

x∈Ω

(

‖yx‖ +
β

2
‖yx − Gxu‖2

)

+
µ

2
‖u − f‖2

Ω . (14)

The parameter β controls smoothing of the total variation; setting β > n/(2ε)
guarantees ε-suboptimality of the solution of the smoothed problem with respect
to the original problem (for a derivation see [18]).

Equation (14) can be solved using alternating minimization w.r.t. u and the
auxiliary variables yx. The latter is highly parallelizable, as it boils down to n
separate explicit operations:

yj+1
x = max

{
‖Gxu‖ − β−1, 0

}
(Gxu/‖Gxu‖) . (15)

On the other hand, minimizing (14) for u amounts to solving

(

Grad⊤Grad + (µ/β)I(nL)

)

uj+1 = Grad⊤yj+1 +
µ

β
f, (16)



Fig. 3. Results of the speed comparison between forward-backward (FB) and half-
quadratic method (HQ) for the inner problem, applied to data from the first iteration

of the outer problem (cf. Table 1). Left to right: Original input, FB with τλ = 5,
HQ with τλ = 5, FB with τλ = 20, HQ with τλ = 20. Iteration counts were fixed
at 80 resp. 300 to equalize the runtime for both approaches. For larger regularization
parameter, the half-quadratic method outperforms the forward-backward approach as
smoothness increases.

for uj+1, where yj+1 is a proper rearrangement of the yx.
For periodic boundary conditions, Yang et al. solved (16) rapidly using FFT.

In our case, Neumann boundary conditions and thus the Discrete Cosine Trans-
form (DCT-2)[34] are appropriate. This requires 2L independent (parallelizable)
individual DCTs which can be efficiently computed in O(n log n) each.

By the alternating application of the above two steps, we can solve (14) for
fixed β large enough for any required suboptimality bound. In practice, con-
vergence can be sped up by starting with a small β and solving a sequence of
problems for increasing β, warm-starting each with the solution for the previous
problem. Given an arbitrary u0 ∈ R

nL, the complete algorithm reads

Algorithm 3 Inner loop, half-quadratic approach

1: while stopping criterium not satisfied do

2: compute yj+1 from (15)
3: compute uj+1 from yj+1 and (16),
4: possibly increase β
5: end while

The stopping criteria can be based on the residual [15]. For our experiments,
we set a fixed iteration count, as increasing β at each step turned out to lead to
fastest convergence, and residua for different β are not comparable.

5 Experiments, Performance Evaluation

Inner Problem. We compared the half-quadratic approach to the conventional
forward-backward method. The difficulty with the former lies in the choice of the
update strategy for β. We chose a generalization of the exponential strategy out-
lined in [15]: Set β = βmin and update by multiplying with c := (βmax/βmin)1/K

for some K until β = βmax. We made the following observations:

– In order to rapidly minimize the objective function, it is best to use a con-
tinuation strategy, i.e. to increase β at each step, rather than spending time
on solving (14) exactly for each β.



Table 1. Run times t (in seconds), objective function values r and relative differences
(rHQ−rFB)/rHQ for the experiment in Fig. 3. For larger τλ, the half-quadratic method
gives more accurate results in the same time.

τλ 0.1 1 2 5 10 20 50

tHQ 1.14 1.23 1.20 1.31 0.98 0.95 1.08
tFB 1.03 1.02 1.06 1.03 1.22 1.25 1.19
rHQ 3901.9 27660.7 36778.5 40038.8 42262.8 44377.1 44752.5
rFB 3901.9 27660.4 36760.6 40104.3 42924.3 46988.6 57504.9

rel. diff. 1.17e-16 1.24e-5 4.85e-4 -1.64e-3 -0.0156 -0.0588 -0.285

– Increasing K generally improves the quality of the result.
– For fixed βmax and K, there seems to be a unique optimal βmin that mini-

mizes the final objective function value.

With the continuation strategy and fixed βmax, we found the optimal βmin to
usually lie in the range of 10−5βmax to 10−3βmax. Unfortunately, there seems to
be a strong dependency on the choice of λ as well as the scale and complexity of
s. We set βmin = 0.2 · 10−4βmax, which worked well for our data. βmax was set
at n/0.2 according to a suboptimality bound of ε = 0.1 (section 4).

We compared the performance of the two methods in terms of the objective
function value for fixed runtime of the optimized Matlab implementations (Fig. 3,
Table 1). For larger τλ, the half-quadratic method gives better results. For τλ =
20, less than 10 iterations are required to reach the quality of 300 iterations of the
forward-backward method, giving a speedup of about 4-5. However, finding the
optimal parameter set is more involved than for the forward-backward method.

Overall Problem. We evaluated the performance of our algorithm against five
different methods in their publicly available implementations from the Middle-
bury MRF benchmark [35]: Belief Propagation (BP), Sequential Belief Propa-
gation (BPS), Graph Cuts with alpha-expansion (GCE) and alpha-beta swap
(GCS), and Sequential Tree Reweighted Belief Propagation (TRBPS). Of each
of the grayscale 32 × 32 images, 20 noisy copies were generated and segmented
into four gray levels with fixed intensities. In view of the last section and in
order not to mix up speed with accuracy issues, we used the forward-backward
approach for the inner loop. We set δinner = 1 ·10−3, δouter = 2 ·10−2, and τ = 1.

For small λ, our method shows results comparable to the other approaches
with respect to the number of bad labels. We point out again that this solution to
the non-binary labeling problem is achieved by solving the convex optimization
problem (6) followed by local rounding as explained in section 2.

In contrast to our method, the MRF benchmark algorithms optimize the
anisotropic energy. To compensate, their λ was scaled by a common factor of
≈

√
2 that was found empirically. Nevertheless, the discretization gives them

a small advantage on images with axis parallel edges (experiments 1 and 2).
Figure 6 demonstrates the performance of our algorithm for color segmentation.
Only few outer iterations (20 in our case) are necessary for accurate optimization.



Fig. 4. Exemplary grayscale segmentation results for the benchmarked methods for
four labels. Left to right: Noisy input data, final results for BP, BPS, GCE, GCS,
TRWS, and the proposed method (TV). λ was manually chosen for each method.
Axis-parallel edges are better recovered by the anisotropic methods, while our isotropic
discretization has an advantage on diagonal edges.

6 Conclusion and Future Work

In this paper, we presented a convex variational approach to solve the com-
binatorial multi-labeling problem for energies involving a general data term,
total-variation-like regularizers, and simplex constraints. To enforce the simplex
constraint, we based our approach on the globally convergent Douglas-Rachford
operator splitting scheme. We evaluated two methods in order to efficiently solve
the ROF-type subproblems, and showed that the half-quadratic approach allows
faster convergence at the price of more involved parameter tuning.

Experiments showed that the quality of the generated labelings is comparable
to state of the art discrete optimization methods, and can be achieved by just
solving a convex optimization problem.

Due to the generality of the data term, our method allows for a wide range of
features or distance measures. To fully evaluate these possibilities in connection
with variations of the TV measure is a subject of our future research.

Acknowledgements. Jing Yuan gratefully acknowledges support by the Ger-
man National Science Foundation (DFG) under grant SCHN 457/9-1.
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6. Chan, T.F., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global minimizers of
image segmentation and denoising models. J. Appl. Math. 66(5) (2006) 1632–1648

7. Pock, T., Schönemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formu-
lation of continuous multi-label problems. In: ECCV. Volume 3. (2008) 792–805

8. Ishikawa, H.: Exact optimization for Markov random fields with convex priors.
PAMI 25(10) (2003) 1333–1336

9. Zach, C., Gallup, D., Frahm, J.M., Niethammer, M.: Fast global labeling for real-
time stereo using multiple plane sweeps. In: VMV. (2008)

10. Kleinberg, J., Tardos, E.: Approximation algorithms for classification problems
with pairwise relationships: Metric labeling and MRFs. In: FOCS. (1999) 14–23



11. Ziemer, W.: Weakly Differentiable Functions. Springer (1989)
12. Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution

Equations. Volume 22 of Univ. Lect. Series. AMS (2001)
13. Sapiro, G., Ringach, D.L.: Anisotropic diffusion of multi-valued images with ap-

plications to color filtering. In: Trans. Image Process. Volume 5. (1996) 1582–1586
14. Chan, T.F., Shen, J.: Image processing and analysis. SIAM (2005)
15. Yang, J., Yin, W., Zhang, Y., Wang, Y.: A fast algorithm for edge-preserving

variational multichannel image restoration. Tech. Rep. 08-09, Rice Univ. (2008)
16. Duval, V., Aujol, J.F., Vese, L.: A projected gradient algorithm for color image

decomposition. CMLA Preprint (2008-21) (2008)
17. Chan, T., Esedoglu, S., Park, F., Yip, A.: Total variation image restoration:

Overview and recent developments. In: The Handbook of Mathematical Models in
Computer Vision. Springer (2005)

18. Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class
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