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Problem

I How to extend this approach to more than 2 labels?

I Multi-Class Labeling

I Variational Approach:

min
`

∫
Ω
s(`(x), x)dx︸ ︷︷ ︸

local data fidelity

+ J(`)︸︷︷︸
regularizer
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Applications

I Denoising/color segmentation

I Image segmentation

I Stereo matching

I Inpainting, photo montage, etc...
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Motivation

I Discrete graph cut based methods have inherent grid bias.

I Many multi-label algorithms find only local minimum:

(input, L-BP, L-BP-S, GCE, GCS, TRWS, TV)

I Can do as well by solving single convex problem with finite
difference discretization (no grid bias)
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Related Work

I Alberti,Bouchitté,dal Maso 1999, Ambrosio,Braides 1990:
Continuous background

I Boykov et al. 2001: On graph; reduce to multiple graph cuts
by α – expansion, optimality bound

I Kleinberg, Tardos 2002: On graph; LP relaxation, optimality
bound

I Zach et al. 2008; Lellmann et al. 2008: General approach for
Potts model; Arrow-Hurwicz / Douglas-Rachford

I Chambolle/Cremers/Pock 2008: Approximate envelope of
discrete problem for nonstandard potentials, Arrow-Hurwicz
optimization

I Lie, Lysaker, Tai 2004; Bae, Tai 2008: Differently ordered
labels, additional term to enforce binarity, Augmented
Lagrangian
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Approach – Questions

I Variational Approach:

min
`

∫
Ω
s(`(x), x)dx︸ ︷︷ ︸

local data fidelity

+ J(`)︸︷︷︸
regularizer

I Questions:
I How to formulate as a (convex) continuous problem?
I How to extend data term and regularizer on convex feasible

set?
I How to numerically solve the resulting nonsmooth problem?
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Approach – Relaxation

I Embed labels into RL as {e1, . . . , eL}.
I Relax to the unit simplex:

I Continuous convex formulation:

min
u:Ω→∆L

f (u) , f (u) =

∫
Ω
〈u(x), s(x)〉dx + J(u)

I Linear data term

I Convex constraints
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Regularizer – How to extend?

I Simplest Case: Boundary length (Potts) ↔ vector Total
Variation:

TV(u) =

∫
Ω

√
‖Du1‖2 + · · ·+ ‖DuL‖2dx

= sup
v∈C∞c (Ω,Rl∗d )

{∫
Ω
〈u,Divv〉dx |‖v(x)‖ 6 1, x ∈ Ω

}
I General Approach:

J(u) = sup
v∈C∞c (Ω,Rl∗d )

{∫
Ω
〈Au,Divv〉dx |v(x) ∈ D, x ∈ Ω

}
I ⇒ Nonsmooth convex problem

I Minimizer exists in BV .
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Regularizer – Non-uniform potentials

I Vary interaction potentials, i.e. penalize perimeter according
to weight

wij

depending on the labels i , j of the adjacent regions:

I Can show that d(i , j) := wij must be a metric if J convex.
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Regularizer – Embedding Approach

I Embedding [LS09] approach means linear embedding in label
space.

I Euclidean interaction potentials can be represented exactly:

wij = ‖ai − aj‖2

I Non-Euclidean interaction potentials can be approximated
using SDP.
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Regularizer – Varying D (tightness)

I Local envelope [CCP08]: Tight, D complicated (inexact
projection)

I Embedding [LS09]: Not as tight, now D is trivial (unit sphere)

I ⇒ Trade-off between tightness of relaxation and
computational effort.
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Regularizer – Embedding Approach

I Euclidean interaction potentials are still powerful:
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Optimization – Problem

I Overall Problem:

min
u:Ω→∆L

∫
Ω
〈u(x), s(x)〉dx + sup

v∈D

∫
Ω
〈Au,Divv〉dx

I Convex but nonsmooth problem with constraints

I Explicit smoothing approaches: critical due to properties of
desired solution

I Here: First order primal/dual methods: small memory
footprint, easy to parallelize
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Optimization – Douglas-Rachford Splitting
I Split into objective and constraints:

u∗ = arg min
u

f1(u)︸ ︷︷ ︸
f (u)

+ f2(u)︸ ︷︷ ︸
δC (u)

I Apply Douglas-Rachford Splitting: Iterate to find fixpoint of

uk = arg min
u

1

2
‖u − (zk + τs)‖2 + τJ(u) ,

wk = ΠC (2uk − zk) ,

zk+1 = zk + wk − uk .

I Globally convergent under mild assumptions for any step size
τ [e.g. Eckstein1989].

I Related to Alternating Split Bregman, Alternating Direct
Method of Multipliers [Setzer09].

I Solve inner “ROF” type denoising problems (strictly convex!)
using dual fixpoint method [Chambolle05] or Half-Quadratic
approach [Yang08] [Lellmann09].
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Optimization – Nesterov approach

I Rewrite as bilinear saddle point problem:

minu∈C maxv∈D g (u, v) ,

g(u, v) := 〈u, s〉+ 〈Lu, v〉 − 〈b, v〉 .

I Controlled smoothing by prox-function combined with fast
smooth first-order method [Nesterov04].

I ε-optimal solution in O(1/ε).

I Explicit suboptimality bounds with certificate (dual feasible
point).

I No parameters besides desired suboptimality.
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Optimization – Related methods

I Interior Point (SOCP): Large overhead, scales badly, memory
footprint

I Appleton,Talbot 2005; Chambolle,Cremers,Pock 2008:
Arrow-Hurwicz – have to choose step size

I Trobin,Pock,Cremers,Bischof 2008; Olsson 2009: Repeated
binary fusion – cf. α-expansion, series of binary problems

I Pock,Schoenemann,Graber,Bischof,Cremers 2009: Popov-like
primal/dual – now proven to converge, fast

I Lie,Lysaker,Tai 2004: Augmented Lagrangian, Uzawa
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Experiments – Relaxation

I Relaxation yields non-discrete results – threshold if desired

I Thresholding does not preserve optimality as in two-class case!

I No artifacts as with graph-based methods:
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Experiments – Discretization

I Competes with graph cut-based methods:
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Experiments – Algorithm
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Intermediate Summary

I Formulate multi-class labeling as continuous convex problem.
I Regularizer as support function

I Trade-off: Complexity of dual constraint set vs. tightness of
relaxation

I Linear embedding permits many useful potentials at no extra
cost

I Optimization:
I Douglas-Rachford splitting: Expensive inner problems
I Nesterov: Fast, parameter-free, explicit performance

guarantees
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