
SIAM J. SCI. COMPUT. c© 2018 Society for Industrial and Applied Mathematics
Vol. 40, No. 3, pp. B858–B888

A MATRIX-FREE APPROACH TO PARALLEL AND
MEMORY-EFFICIENT DEFORMABLE IMAGE REGISTRATION∗

LARS KÖNIG† , JAN RÜHAAK† , ALEXANDER DERKSEN† , AND JAN LELLMANN‡

Abstract. We present a novel computational approach to fast and memory-efficient deformable
image registration. In the variational registration model, the computation of the objective function
derivatives is the computationally most expensive operation, both in terms of runtime and memory
requirements. In order to target this bottleneck, we analyze the matrix structure of gradient and
Hessian computations for the case of the normalized gradient fields distance measure and curvature
regularization. Based on this analysis, we derive equivalent matrix-free closed-form expressions for
derivative computations, eliminating the need for storing intermediate results and the costs of sparse
matrix arithmetic. This has further benefits: (1) matrix computations can be fully parallelized, (2)
memory complexity for derivative computation is reduced from linear to constant, and (3) overall
computation times are substantially reduced. In comparison with an optimized matrix-based refer-
ence implementation, the CPU implementation achieves speedup factors between 3.1 and 9.7, and
we are able to handle substantially higher resolutions. Using a GPU implementation, we achieve an
additional speedup factor of up to 9.2. Furthermore, we evaluated the approach on real-world med-
ical datasets. On 10 publicly available lung computed tomography (CT) images from the DIR-Lab
4DCT dataset, we achieve the best mean landmark error of 0.93mm compared to other submissions
on the DIR-Lab website, with an average runtime of only 9.23s. Complete nonrigid registration
of full-size three-dimensional thorax-abdomen CT volumes from oncological followup is achieved in
12.6s. The experimental results show that the proposed matrix-free algorithm enables the use of
variational registration models also in applications which were previously impractical due to memory
or runtime restrictions.

Key words. deformable image registration, computational efficiency, parallel algorithms

AMS subject classifications. 92C55, 65K10, 65Y05

DOI. 10.1137/17M1125522

1. Introduction. Image registration denotes the process of aligning two or more
images for analysis and comparison [30]. Deformable registration approaches, which
allow for nonrigid, nonlinear deformations, are of particular interest in many areas of
medical imaging and contribute to the development of new technologies for diagnosis
and therapy. Applications range from motion correction in gated cardiac positron
emission tomography (PET) [16] and biomarker computation in regional lung function
analysis [15] to intersubject registration for automated labeling of brain data [1].

For successful clinical adoption of deformable image registration, moderate mem-
ory consumption and low runtimes are indispensable, which is made more difficult by
the fact that data is usually three-dimensional (3D) and therefore large. For example,
in order to fuse computed tomography (CT) images for oncological followup, volumes
with typical sizes of around 512×512×900 voxels need to undergo full 3D registration;
see Figure 1 for an example of a thorax-abdomen registration. In a clinical setting,
these registrations have to be performed for every acquired volume and must be avail-

∗Submitted to the journal’s Computational Methods in Science and Engineering section April
13, 2017; accepted for publication (in revised form) March 30, 2018; published electronically June
12, 2018. The first preliminary results of this work were announced in 4- and 5-page conference
proceedings [28, 25].

http://www.siam.org/journals/sisc/40-3/M112552.html
†Fraunhofer MEVIS, 23562 Lübeck, Germany (lars.koenig@mevis.fraunhofer.de, jan.ruehaak@

mevis.fraunhofer.de, alexander.derksen@mevis.fraunhofer.de).
‡Institute of Mathematics and Image Computing, University of Lübeck, 23562 Lübeck, Germany,

and Fraunhofer MEVIS, 23562 Lübeck, Germany (jan.lellmann@mic.uni-luebeck.de).

B858

http://www.siam.org/journals/sisc/40-3/M112552.html
mailto:lars.koenig@mevis.fraunhofer.de
mailto:jan.ruehaak@mevis.fraunhofer.de
mailto:jan.ruehaak@mevis.fraunhofer.de
mailto:alexander.derksen@mevis.fraunhofer.de
mailto:jan.lellmann@mic.uni-luebeck.de

MATRIX-FREE DEFORMABLE IMAGE REGISTRATION B859

(a) Prior scan (b) Current scan (c) Initial difference (d) After registration

Fig. 1. Registration of thorax-abdomen 3D CT scans for oncological followup. (a) coronal slice
of prior scan, (b) coronal slice of current scan with deformation grid overlay, (c) subtraction image
before registration, (d) subtraction image after registration. The current scan is deformed onto
the prior scan using the proposed variational method. The subtraction image highlights the areas
of change (white spots in the lung) corresponding to tumor growth. Image courtesy of Radboud
University Medical Center, Nijmegen, The Netherlands. Used with permission.

able quickly in order not to slow down the clinical workflow. In other situations, such
as in population studies or during screening, the large number of required registra-
tions demands efficient deformable image registration algorithms. In some areas, such
as liver ultrasound tracking, real-time performance is even required [27, 11].

Consequently, a lot of research has been dedicated to increasing the efficiency
of image registration algorithms; see [45, 47, 12] for an overview. The literature
can be divided into approaches that aim at modifying the algorithmic structure of a
registration method in order to increase efficiency [17, 18, 48] and approaches that
specialize a given algorithm on a particular hardware platform—mostly on massively
parallel architectures such as graphics processing units (GPUs) [24, 38, 4, 46], but also
on digital signal processors (DSPs) [2] or field programmable gate arrays (FPGAs) [9].

Contributions and overview. In the following, we focus on variational approaches
for image registration, which rely on numerical minimization of an energy function
that depends on the input data. While such methods have been successfully used in
various applications [43, 5, 16, 36], they involve expensive derivative computations,
which are not straightforward to implement efficiently and hinder parallelizability.

In this work, we aim to work towards closing this gap:
• We analyze the derivative structure of the classical, widely known variational

image registration model [35, 36] with the normalized gradient fields distance
measure [19] and curvature regularization [14], which has been successfully
used for various image registration problems [49, 26, 11] (sections 3 and 4).

• We study the use of efficient matrix-free techniques for derivative calculations
in order to improve computational efficiency (section 4). In particular, we
present fully matrix-free computation rules, based on the work on affine-
linear image registration in [44] and deformable registration in [28, 25], for
objective function gradient computations (section 4.1.1) and Gauss–Newton
Hessian-vector multiplications (section 4.1.2).

• We perform a theoretical analysis of the proposed approach in terms of com-
putational effort and memory usage (section 5).

B860 L. KÖNIG, J. RÜHAAK, A. DERKSEN, AND J. LELLMANN

• Finally, we quantitatively evaluate CPU and GPU implementations (sec-
tion 6.3) of the new method with respect to speedup, parallel scalability,
(section 6.1) and problem size and in comparison with two alternative meth-
ods (section 6.2). We demonstrate the real-world applicability on two medical
applications (section 6.4).

Benefits of the proposed approach are full parallelization of objective function and
derivative computations, reduction of derivative computation memory requirements
from linear to constant, and a large reduction in overall runtime. The strategy can
also be applied to other distance measures and regularizers, for which we discuss
requirements and limitations.

In order to underline the merits of the approach in the clinic, we exemplarily
consider two medical applications. First, the registration algorithm is employed for
registering lung CT images in inhaled and exhaled positions (section 6.4.1). On the
widely used DIR-Lab 4DCT database [8, 6], we achieve the best mean landmark error
of 0.93 mm in comparison with the results reported at [7] with an average runtime
of only 9.23 s, computed on a standard workstation. Second, we consider oncological
follow-up studies in the thorax-abdomen region (section 6.4.2), where qualitatively
convincing results are obtained at a clinically feasible runtime of 12.6 s.

2. Variational image registration framework.

2.1. Continuous model. While there are numerous different applications of
image registration, the goal is always the same: to obtain spatial correspondences
between two or more images. Here we only consider the case of two images. The
first image is denoted the reference image R (sometimes also called fixed image), and
the second image is the template image T (or moving image) [36]. For 3D gray-scale
images, the two images are given by functions R : R3 → R and T : R3 → R on
domains ΩR ⊂ R3 and ΩT ⊂ R3, mapping each coordinate to a gray value. To
establish correspondence between the images, a deformation function ϕ : ΩR → R3

is sought, which encodes the spatial alignment by mapping points from reference to
template image domain. With the composition T (ϕ) : ΩR → R, x 7→ T (ϕ(x)), a
deformed template image in the reference image domain can be obtained.

In order to find a suitable deformation ϕ, two competing criteria must be bal-
anced. First, the deformed template image should be similar to the reference image,
determined by some distance measure D(R, T (ϕ)). Second, as the distance measure
alone is generally not enough to make the problem well-posed and robust, a regularizer
S(ϕ) is introduced, which requires the deformation to be “reasonable.” An optimal
deformation meeting both criteria is then found by solving the optimization problem

min
ϕ:ΩR→R3

J (ϕ), J (ϕ) := D(R, T (ϕ)) + αS(ϕ),(1)

where α > 0 is a weighting parameter. Numerous different approaches and definitions
for distance measures [10, 51, 35] and regularizers [14, 3, 5] have been presented, each
with specific properties tailored to the application.

This work focuses on the normalized gradient fields (NGF) distance measure. It
was first presented in [19] and has since been successfully used in a wide range of
applications [43, 41, 26]. The NGF distance is particularly suited for multimodal
registration problems, where image intensities of reference and template images are
related in complex and usually nonlinear ways, and represents a fast and robust

MATRIX-FREE DEFORMABLE IMAGE REGISTRATION B861

alternative [19] to the widely used mutual information [10, 51]. It is defined as

D(ϕ) =

∫
ΩR

1−
(
〈∇T (ϕ),∇R〉+ τ%

‖∇T (ϕ)‖τ‖∇R‖%

)2

dx,(2)

where ‖ · ‖ε :=
√
〈·, ·〉+ ε2, and τ, % > 0 are parameters that control filtering of

noise in each image. The underlying assumption is that even in different imaging
modalities, intensity changes still take place at corresponding locations. Therefore,
the NGF distance advocates parallel alignment of image gradient directions, i.e., edge
orientations.

For the regularizer S, we use curvature regularization [14],

S(ϕ) =

∫
ΩR

3∑
j=1

(∆uj)
2dx.

S is defined in terms of the displacement u := (u1, u2, u3)> := ϕ− id, where id is the
identity transformation. The curvature regularizer penalizes second-order derivatives
and thus favors “smooth” deformations, while not penalizing affine transformations
such as translations or rotations. Similar to NGF, curvature regularization has been
successfully used in multiple applications; see, e.g., [43, 26, 27].

2.2. Discretization. In order to solve the registration problem (1), we follow a
discretize-then-optimize approach [36]: First, the deformation ϕ and objective func-
tion J are turned into a discretized energy. Second, this discretized energy is mini-
mized using standard methods from numerical optimization (section 2.3). For refer-
ence, the notation introduced in the following is summarized in Table 1.

The image domain ΩR is discretized on a cuboid grid with mx,my,mz grid cells
(voxels) in each dimension and m̄ := mxmymz cells in total. The corresponding grid
spacings are denoted by hx, hy, hz and the cell volume by h̄ := hxhyhz. The associated
image grid is defined as the cell-centers

X :=
{(
îhx − hx

2 , ĵhy −
hy

2 , k̂hz −
hz

2

) ∣∣∣ î = 1, . . . ,mx, ĵ = 1, . . . ,my, k̂ = 1, . . . ,mz

}
.

Using a lexicographic ordering defined by the index mapping i := î+ ĵ mx + k̂ mxmy,
the elements in X can be assembled into a single vector x := (x1, . . . , x3m̄) ∈ R3m̄,
which is obtained by first storing all x-, then all y-, and finally all z-coordinates in
the order prescribed by i. The ith grid point in X is then xi := (xi, xi+m̄, xi+2m̄) ∈
R3. Evaluating the reference image on all grid points can be compactly written as
R(x) := R (xi)i=1,...,m̄, resulting in a vector R(x) ∈ Rm̄ of image intensities at the
grid points.

In a similar way, we define the discretized deformation y := ϕ(xy) as the evalua-
tion of ϕ on a deformation grid xy. Again we order all components of y in a vector,
y = (y1, . . . , y3m̄y), so that ϕ(xy

i) = (yi, yi+m̄y , yi+2m̄y), where the deformation grid
has grid spacings hy

x, h
y
y, h

y
z , and my

x,m
y
y,m

y
z denote the number of grid points in each

direction with m̄y := my
xm

y
ym

y
z .

Importantly, instead of using cell-center coordinates, the deformation is dis-
cretized on cell corners, i.e., using a nodal grid. This ensures that the deformation is
discretized up to the boundary of the image domain, enabling an efficient grid con-
version without requiring extrapolation or additional boundary conditions (section
4.3).

B862 L. KÖNIG, J. RÜHAAK, A. DERKSEN, AND J. LELLMANN

Table 1
Summary of notation introduced in section 2.2 for discretization of the continuous registration

problem. All notation regarding the deformation grid is identical to the corresponding notation for
the image grid, except for an additional superscript “y”; e.g., m denotes the number of grid cells in
the image grid, and my denotes the number of grid cells in the deformation grid.

x, y, z spatial coordinate axes
R, T reference, template image functions, R, T : R3 → R
ΩR reference image domain, ΩR ⊂ R3

ϕ deformation function, ϕ : ΩR → R3

m,my number of grid cells in the image/deformation grid, m = (mx,my ,mz)
m̄, m̄y total number of grid cells, m̄ = mxmymz

h, hy grid spacings for each coordinate direction, h = (hx, hy , hz)
h̄, h̄y volume of a single grid cell, h̄ = hxhyhz
i linear index with i = î+ ĵmx + k̂mxmy

i− x, i+ x indices of neighbors in x-direction, taking boundary conditions into account
i− y, i+ y indices of neighbors in y-direction, taking boundary conditions into account
i− z, i+ z indices of neighbors in z-direction, taking boundary conditions into account
x,xy vector of lexicographically ordered grid points, x = (x1, . . . , x3m̄) ∈ R3m̄

xi,x
y
i ith grid point, xi = (xi, xi+m̄, xi+2m̄) ∈ R3

y deformation discretized on deformation grid, y = (y1, . . . , y3m̄y) ∈ R3m̄y
,

(yi, yi+m̄y , yi+2m̄y) = ϕ(xy
i)

u displacement discretized on deformation grid, u = y − xy ∈ R3m̄y

P grid conversion operator from deformation grid to image grid,

P : R3m̄y → R3m̄

ŷ deformation discretized on image grid points, ŷ = P (y) ∈ R3m̄

ŷi ith deformation point, ŷi = (P (y)i, P (y)i+m̄, P (y)i+2m̄)
R(x) reference image evaluated on image grid, R : R3m̄ → Rm̄

Ri scalar value of reference image at ith grid point, Ri = R(xi) ∈ R
T (P (y)) template evaluated on deformed image grid, T : R3m̄ → Rm̄

Ti scalar value of reference image at deformed ith grid point, Ti = T (ŷi) ∈ R

This results in my
x,m

y
y,m

y
z coordinates in each direction and m̄y := my

xm
y
ym

y
z grid

points in total. The set of all nodal grid points is given by

X y :=
{(
îhy
x, ĵh

y
y, k̂h

y
z

) ∣∣∣ î= 0, . . . ,my
x−1, ĵ= 0, . . . ,my

y−1, k̂= 0, . . . ,my
z−1

}
.

Analogously to the image grid, using the linear index i := î+ĵ my
x+k̂ my

xm
y
y, the points

from X y can be ordered lexicographically in a vector xy := (xy
1, . . . , x

y
3m̄y) ∈ R3m̄y

,
with a single point having the coordinates xy

i := (xy
i , x

y
i+m̄y , x

y
i+2m̄y).

We refer the reader to [36] for further discussion on different grids. In this work,
the deformation grid size is always chosen with my

k − 1 ≤ mk, k = x, y, z, so that the
image grid is as least as fine as the deformation grid.

The separate choice of grids allows one to use a coarser grid for the deformation—
which directly affects the number of unknowns—and a high-resolution grid for the
input images. However, it adds an extra interpolation step, as in order to compute
the distance measure, the deformed template image T (ϕ) needs to be evaluated on
the same grid as the reference image R.

We use a linear interpolation function P : R3m̄y → R3m̄, mapping between im-
age grid and deformation grid, and define T (P (y)) := (T (ŷi))i=1,...,m̄ ∈ Rm̄ with
ŷi := (P (y)i, P (y)i+m̄, P (y)i+2m̄). For evaluating the template image T , trilinear
interpolation with Dirichlet boundary conditions is used. This is a reasonable as-
sumption for medical images, which often exhibit a black background.

Discretizing the integral in (2) using the midpoint quadrature rule and denoting

MATRIX-FREE DEFORMABLE IMAGE REGISTRATION B863

by Ti, Ri the ith component function, the compact expression

D(y) = h̄

m̄∑
i=1

1−

(
1
2 〈∇̃Ti(P (y)), ∇̃Ri(x)〉+ τ%

‖∇̃Ti(P (y))‖τ‖∇̃Ri(x)‖%

)2
(3)

is obtained for the full discretized NGF term. The factor 1/2 is caused by the “square-
then-average” scheme for discretizing the gradient ∇̃: Given a discretized image I ∈
Rm̄, we define the backward difference operator at the ith grid point, ∇̃−Ii : Rm̄ → R3,
as

∇̃−Ii :=

(
Ii − Ii−x

hx
,
Ii − Ii−y

hy
,
Ii − Ii−z

hz

)
,

where the neighborhood is defined via

i− x := max(̂i− 1, 1) + ĵ mx + k̂mxmy, i+ x := min(̂i+ 1,mx) + ĵ mx + k̂mxmy,

(4)

i− y := î+ max(ĵ − 1, 1)mx + k̂mxmy, i+ y := î+ min(ĵ + 1,my)mx + k̂mxmy,

i− z := î+ ĵmx + max(k̂ − 1, 1)mxmy, i+ z := î+ ĵmx + min(k̂ + 1,mz)mxmy

and i0 := i. This allows us to implement Neumann boundary conditions without
special treatment of the boundary cells. By ∇̃+Ii we denote the corresponding forward
finite differences operator. We combine both operators into one,

∇̃Ii :=
(
∇̃−Ii, ∇̃+Ii

)
,(5)

with ∇̃Ii : Rm̄ → R6, and define ‖∇̃Ii‖ε :=
√

1
2 〈∇̃Ii, ∇̃Ii〉+ ε2. This “square-then-

average” scheme for approximating the terms in (2) allows us to use “short” forward
and backward differences, which better preserve high frequency gradients than “long”
central differences [21]. The factor 1/2 is required in order to faithfully discretize
(2) and can be interpreted as an averaging of the squared norms of the forward and
backward operators.

Similarly to the NGF, the curvature regularizer is discretized as

S(y) = h̄y
m̄y∑
i=1

2∑
d=0

(
∆̃ui+dm̄y

)2

,(6)

with the discretized displacement u := (u1, . . . ,u3m̄y) := y − xy and the discretized
Laplace operator

∆̃ui+dm̄y :=
∑

k∈{x,y,z}

1

(hy
k)

2 (ui−k+dm̄y − 2 ui+dm̄y + ui+k+dm̄y) ,(7)

with homogeneous Neumann boundary conditions. Overall, we obtain the discretized
version

min
y∈R3m̄y

J(y), J(y) := D(y) + αS(y),(8)

of the minimization problem (1), which can then be solved using quasi-Newton meth-
ods, as summarized in the following section.

B864 L. KÖNIG, J. RÜHAAK, A. DERKSEN, AND J. LELLMANN

2.3. Numerical optimization. In order to find a minimizer of the discretized
objective function (8), we use iterative Newton-like optimization schemes. In each
step of the iteration, an equation of the form

∇̂2J(yk)sk = −∇J(yk)(9)

is solved for a descent direction sk. Then yk is updated via

yk+1 = yk + ηsk,

where the step length η is determined by Armijo line search [39, 36]. The matrix
∇̂2J should approximate the Hessian ∇2J(yk). Here we consider the Gauss–Newton
scheme and the L-BFGS scheme, which have both been used in different image reg-
istration applications [50, 25, 43]. The minimization is embedded in a coarse-to-fine
multilevel scheme, where the problem is solved on consecutively finer deformation and
image grids.

2.3.1. Gauss–Newton. The Gauss–Newton scheme uses a quadratic approxi-
mation of the Hessian and is suitable for least-squares-type objective functions of the
form

Ĵ(y) = r̂(y)>r̂(y) = ‖r̂(y)‖22,(10)

where r̂(y) is a residual function, which can depend in a nonlinear way on the un-
known y. The gradient in the Newton equation (9) can be written as ∇Ĵ = 2 r̂> dr̂,
where dr̂ is the Jacobian of r̂, and the Hessian is approximated by H := ∇̂2Ĵ =
2dr̂>dr̂ [39]. This approximation discards second-order derivative parts of the Hes-
sian and guarantees a symmetric positive semidefinite Hessian approximation H, so
that sk in (9) is always a descent direction.

We apply this approximation only to the Hessian of the distance measure D,
∇2D ≈ H. For the regularizer S, we use the exact Hessian, which is readily available,
as S is a quadratic function. The (quasi-)Newton equation (9) can be written as

(H + α∇2S)sk = −(∇D + α∇S),

which is then approximately solved in each step using a conjugate-gradient (CG)
iterative solver [39].

2.3.2. L-BFGS. Instead of directly determining a Hessian approximation at
each step, the L-BFGS scheme iteratively updates the approximation using previous
and current gradient information.

L-BFGS requires an initial approximation H0 of the Hessian, which is often chosen
to be a multiple of the identity. However, in our case we can incorporate the known
Hessian of the regularizer S by choosing H0 = ∇2S+γI, where I is the identity matrix
and γ > 0 is a parameter, in order to make H0 positive definite; further details can
be found in [36, 39].

3. Analytical derivatives. As can be seen from section 2.3, computing deriva-
tives of distance measure and regularizer is a critically important task for the mini-
mization of the discretized objective function. In this section, algebraic formulations
of the required derivatives are presented which allow for a closer analysis and con-
struction of specialized computational schemes.

MATRIX-FREE DEFORMABLE IMAGE REGISTRATION B865

3.1. Curvature. The discretized curvature regularizer (6) is a quadratic func-
tion involving the (linear) Laplace operator ∆̃ui. Thus, using the chain rule the ith
element of the gradient can explicitly be computed by

(∇S(y))i+dm̄y = 2 h̄y∆̃
(

∆̃u
)
i+dm̄y

,(11)

with d ∈ {0, 1, 2} for the directional derivatives. The Hessian is constant and can be
immediately seen from (7).

3.2. NGF. The inner computations of the NGF in (3) can be rewritten more
compactly by introducing a residual function r : Rm̄ → Rm̄ with components

ri(T) :=
1
2 〈∇̃Ti, ∇̃Ri〉+ τ%

‖∇̃Ti‖τ‖∇̃Ri‖%
,(12)

so that the NGF term in (3) becomes

D(y) = h̄

m̄∑
i=1

(
1− ri(T (P (y)))2

)
.(13)

Introducing a reduction function ψ : Rm̄ → R, (r1, . . . , rm̄)
> 7→ h̄

∑m̄
i=1(1 − r2

i), it
holds that

D(y) = ψ(r(T (P (y)))).(14)

This composite function maps the deformation y ∈ R3m̄y

onto a scalar image similarity
in four steps,

R3m̄y P→ R3m̄ T→ Rm̄ r→ Rm̄ ψ→ R.(15)

Using the chain rule, the gradient of D can now be obtained as a product of (sparse)
Jacobian matrices

∇D =

(
∂ψ

∂r

∂r

∂T

∂T

∂P

∂P

∂y

)>
.(16)

The Gauss–Newton approximation of the Hessian (section 2.3.1) becomes

H = 2 h̄
∂P

∂y

> ∂T

∂P

> ∂r

∂T

> ∂r

∂T

∂T

∂P

∂P

∂y
.(17)

Note that, in contrast to the classical Gauss–Newton method (10), the residual in
(13) has a different sign. Therefore, in order to compute a descent direction in (9),
the sign of the Hessian approximation has been inverted (see also [36]).

Using these formulations, the evaluation of the gradient and Hessian can be im-
plemented based on sparse matrix representations [36]. However, while insightful
for educational and analytic purposes, these schemes have important shortcomings:
storing the matrix elements requires large amounts of memory, while assembling the
sparse matrices and sparse matrix multiplications impedes efficient parallelization. In
the following sections, we will therefore focus on strategies for direct evaluation that
do not require intermediate storage and are highly parallel.

B866 L. KÖNIG, J. RÜHAAK, A. DERKSEN, AND J. LELLMANN

4. Derivative analysis and matrix-free computation schemes. From a
computational perspective, the NGF (13) and curvature formulations (6) are very
amenable to parallelization, as all summands are independent of each other, and there
are no inherent intermediate matrix structures required. However, this advantage is
lost when the evaluation of the derivatives is implemented using individual matrices
for the factors in (16) and (17).

In order to exploit the structure of the partial derivatives, in the following sections
we will analyze the matrix structure of all derivatives and derive equivalent closed-
form expressions that do not rely on intermediate storage.

We will make substantial use of the fact that the matrix structure of the partial
derivatives is independent of the data. Therefore, the locations of nonzero elements
are known a priori, which allows us to derive efficient sparse schemes.

4.1. Derivative computations for NGF.

4.1.1. Gradient. The NGF gradient computation in (16) involves four different
Jacobian matrices. The derivative of the vector reduction ψ(r) is straightforward:

∂ψ

∂r
= −2h̄r = −2h̄ (r1, . . . , rm̄) ∈ R1×m̄.(18)

In contrast, the computation of ∂r
∂T ∈ Rm̄×m̄ is considerably more involved. In order

to calculate a single row of this Jacobian ∂ri
∂T , the definition (13) can be used and

interpreted as a quotient

ri =
r1,i

r2,i
=

1
2 〈∇̃Ti, ∇̃Ri〉+ τ%

‖∇̃Ti‖τ‖∇̃Ri‖%
.(19)

Separately differentiating numerator and denominator, this yields

∂r1,i

∂T
=

1

2
(∇̃Ri)>

∂∇̃i
∂T
∈ R1×m̄ and

∂r2,i

∂T
= ‖∇̃Ri‖%

(∇̃Ti)>

2‖∇̃Ti‖τ
∂∇̃i
∂T
∈ R1×m̄.

Included in both of these terms is the derivative of the finite differences gradient
computation ∇̃Ti : Rm̄ → R6 as defined in (5), i.e., mapping an image to the forward
and backward difference gradients. As the gradient at a single point only depends on

the values at the point itself and at neighboring points, the Jacobian ∂∇̃i

∂T ∈ R6×m̄ is
of the form

∂∇̃i
∂T

=



i− z i− y i− x i i+ x i+ y i+ z

−1
hx

1
hx

−1
hy

1
hy

−1
hz

1
hz

−1
hx

1
hx

−1
hy

1
hy

−1
hz

1
hz


,

where only nonzero elements are shown and the nonzero column indices are displayed

MATRIX-FREE DEFORMABLE IMAGE REGISTRATION B867

above the matrix. The quotient rule, applied to (19), leads to

∂ri
∂T

=
1

r2
2,i

(
∂r1,i

∂T
r2,i − r1,i

∂r2,i

∂T

)
=
∂r1,i

∂T

1

r2,i
− r1,i

r2
2,i

∂r2,i

∂T
(20)

=
(∇̃Ri)>

2‖∇̃Ti‖τ‖∇̃Ri‖%
∂∇̃i
∂T
−

1
2 〈∇̃Ti, ∇̃Ri〉+ τ%

‖∇̃Ti‖2τ‖∇̃Ri‖2%
‖∇̃Ri‖%

(∇̃Ti)>

2‖∇̃Ti‖τ
∂∇̃i
∂T

(21)

=
1

2

(
(∇̃Ri)>

‖∇̃Ti‖τ‖∇̃Ri‖%
∂∇̃i
∂T
−

1
2 〈∇̃Ti, ∇̃Ri〉+ τ%

‖∇̃Ti‖3τ‖∇̃Ri‖%
(∇̃Ti)>

∂∇̃i
∂T

)
.(22)

We introduce the abbreviation

ρi(k) :=
−Ri +Ri+k

‖∇̃Ti‖τ‖∇̃Ri‖%
−

(
1
2 〈∇̃Ti, ∇̃Ri〉+ τ%

)
(−Ti + Ti+k)

‖∇̃Ti‖3τ‖∇̃Ri‖%
(23)

and the set of indices of nonzero elements

K := {−z,−y,−x, 0, x, y, z}.(24)

Furthermore, define ĥk := 1

2(h|k|)
2 and

ρ̂i(k) :=

{∑
j∈K\{0}−ĥjρi(j) if k = 0,

ĥkρi(k) otherwise.
(25)

Then, (22) can be compactly written as

∂ri
∂T

=
(i− z i− y i− x i i+ x i+ y i+ z

ρ̂i(−z) ρ̂i(−y) ρ̂i(−x) ρ̂i(0) ρ̂i(x) ρ̂i(y) ρ̂i(z)

)
∈ R1×m̄,(26)

where only nonzero elements are shown and single element locations are denoted above
the vector. It can be seen that (26) exhibits a very sparse pattern with only seven
nonzero elements.

For a full gradient computation as in (16), it remains to consider the terms ∂T
∂P

and ∂P
∂y . The first term represents the derivative of the template image interpolation

function with respect to the image grid coordinates. Given the lexicographical or-
dering of the grid points, the image derivative matrix is composed of three diagonal
matrices,

∂T

∂P
=
(

diag
(
∂T1

∂P1
. . . ∂Tm̄

∂Pm̄

)
,diag

(
∂T1

∂Pm̄+1
. . . ∂Tm̄

∂P2m̄

)
,diag

(
∂T1

∂P2m̄+1
. . . ∂Tm̄

∂P3m̄

))
,(27)

where each nonzero element represents the derivative at a single point with respect
to a single coordinate.

The last remaining term ∂P
∂y is the Jacobian of the grid conversion function. This

is a linear operator, which will be analyzed in detail in section 4.3.
From the derivations in (18), (26), and (27), it can be seen that the main compo-

nents of the NGF gradient computation exhibit a sparse structure with fixed patterns.
The main effort comes from computing the derivative of r, which has a seven-banded
diagonal structure.

B868 L. KÖNIG, J. RÜHAAK, A. DERKSEN, AND J. LELLMANN

Algorithm 1 Pseudocode for matrix-free computation of the elements of the NGF
gradient as in (28). The algorithm can be fully parallelized over all loop iterations.

1: for k̂ in [0,mz − 1] do
2: for ĵ in [0,my − 1] do

3: for î in [0,mx − 1] do

4: i← î+mxĵ +mxmyk̂ . Compute linear index
5: i± x, i± y, i± z ← as in (4) . Compute neighbor indices
6: [dTx, dTy, dTz]← imageDerivative(Ti) . Compute image derivative
7:

8: r← [ri−z, ri−y, ri−x, ri, ri+x, ri+y, ri+z] . ri as defined in (19)
9: dr← [ρ̂i−z(z), ρ̂i−y(y), ρ̂i−x(x), ρ̂i(0), ρ̂i+x(−x), ρ̂i+y(−y), ρ̂i+z(−z)]

10: . ρ̂i as defined in (25)
11: drSum← −2h̄ (r[0]dr[0] + r[1]dr[1] + r[2]dr[2] + r[3]dr[3]

12: + r[4]dr[4] + r[5]dr[5] + r[6]dr[6])
13: . Compute sum of (28)
14: grad[i]← drSum · dTx
15: grad[i+ m̄]← drSum · dTy
16: grad[i+ 2m̄]← drSum · dTz
17: end for
18: end for
19: end for
Output: grad[i+ dm̄] =

(
∂D
∂P

)
i+dm̄

Exploiting this pattern, a single element of the partial gradient ∂D
∂P := ∂ψ

∂r
∂r
∂T

∂T
∂P ∈

R1×3m̄ can be explicitly computed as(
∂D

∂P

)
i+dm̄

= −2 h̄

(∑
k∈K

ri+kρ̂i+k(−k)

)
∂Ti

∂Pi+dm̄
,(28)

where d ∈ {0, 1, 2} and K = {−z,−y,−x, 0, x, y, z} as in (24). Algorithm 1 shows a
pseudocode implementation for computing the individual elements of the gradient as
in (28).

This formulation has multiple benefits: Any element of the gradient can be com-
puted directly from the input data, without the need for (sparse) matrices and without
having to store intermediate results. Furthermore, gradient elements can be computed
independently, which allows for a fully parallel implementation. As will be discussed
in section 5, both of these properties substantially decrease memory usage and com-
putation time.

4.1.2. Hessian-vector multiplication. As noted in section 2.3.1, when using
the Gauss–Newton scheme for optimization, linear systems involving the quadratic
approximation H ∈ R3m̄y×3m̄y

of the Hessian (17) need to be solved in each itera-
tion. Although H is sparse, the memory requirements for storing the final as well as
intermediate matrices can still be considerable. Therefore, in the following we will
consider an efficient scheme for evaluating the matrix-vector product Hp = q with
p,q ∈ R3m̄y

, which is the foundation for using iterative methods, such as conjugate
gradients, in order to solve the (Gauss–)Newton equation (9).

Figure 2 shows a schematic of the computations involved. Again, we consider the
Jacobian ∂P

∂y and its transpose in (17) as separate grid conversion steps, which will be

MATRIX-FREE DEFORMABLE IMAGE REGISTRATION B869

discussed in detail in section 4.3. The main computations consist of computing the
matrix product

Ĥ :=
∂T

∂P

> ∂r

∂T

> ∂r

∂T

∂T

∂P
∈ R3m̄×3m̄,(29)

with the components ∂T
∂P ∈ Rm̄×3m̄, ∂r

∂T ∈ Rm̄×m̄, which is equivalent to computing
the approximate Hessian H in (17) with the exception of the grid conversion steps.

We first analyze the matrix-vector product Ĥp̂ = q̂, with p̂, q̂ ∈ R3m̄. Abbre-
viating dr := ∂r

∂T , the main challenge is efficiently computing the matrix product
dr>dr.

Using the definition and notation of a single row of dr given in (26), a single
column of the matrix can be written as

∂r

∂Ti
=
(i− z i− y i− x i i+ x i+ y i+ z

ρ̂i−z(z) ρ̂i−y(y) ρ̂i−x(x) ρ̂i(0) ρ̂i+x(−x) ρ̂i+y(−y) ρ̂i+z(−z)
)>
,

(30)

again only showing nonzero elements at the indices denoted above the vector. As in
(26), a single column contains only seven nonzero elements.

Abbreviating dri := ∂r
∂Ti
∈ Rm̄×1, each element of the matrix dr>dr is a scalar

product of columns 〈dri, drj〉 for i, j = 1, . . . , m̄. However, due to the sparsity of
the columns of dr in (30), there are only a few nonzero scalar products. As a basic
example, consider the diagonal elements of dr>dr. In column dri, nonzero elements
are located at (dri)i+k, k ∈ K, with K as in (24). This yields the scalar products
〈dri, dri〉 =

∑
k∈K(dri)

2
i+k =

∑
k∈K ρ̂i+k(−k)2, a sum of seven terms.

More generally, for arbitrary i, j, define κ := j−i, so that 〈dri, drj〉 = 〈dri, dri+κ〉.
In order to characterize the elements where 〈dri, dri+κ〉 can be nonzero, observe that
the nonzero elements of dri are located at indices i+M,

M := {−mxmy,−mx,−1, 0, 1,mx,mxmy}.(31)

Consequently, 〈dri, dri+κ〉 can only be nonzero if (i+M)∩ (i+κ+M) 6= ∅, i.e., if the
scalar product involves at least two nonzero elements. Equivalently, κ ∈ N :=M−M,
and therefore the number of nonzero inner products is bounded from above by the
number of elements |N | in N . Naturally, |N | ≤ |M| · |M| = 49; however, it turns out
that this bound can be substantially lowered.

In order to do so, define the mapping

N(i, j) := j − i, N :M×M→ Z,

so that

N = N(M,M) =
{
κ ∈ Z

∣∣∣ κ = N(i, j), i, j ∈M
}
.

Inspecting all possible combinations for i and j, it turns out that |N | = 25 (Table 2),
which implies that each column of dr>dr has at most 25 nonzero elements.

For a given offset κ = j− i, the preimage N−1(κ) indicates the indices of nonzero
elements contributing to the inner product 〈dri, drj〉. As shown in the rightmost
column in Table 2, for the main diagonal of dr>dr, seven elements are involved in the

B870 L. KÖNIG, J. RÜHAAK, A. DERKSEN, AND J. LELLMANN

∂P
∂y

> ·



•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•



∂T
∂P

>



• • • •
• • • • •
• • • • •

• • • • • •
• • • • •
• • • • •

• • • • • •
• • • • •
• • • • •
• • • •



∂r
∂T

>



• • • •
• • • • •
• • • • •

• • • • • •
• • • • •
• • • • •

• • • • • •
• • • • •
• • • • •
• • • •



∂r
∂T



• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •



∂T
∂P

· ∂P∂y ·



•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•



p

=



•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•



q

Fig. 2. Schematic view of Hessian-vector multiplication Hp = q. The computation involves
highly sparse matrices with a fixed pattern of nonzeros. The main computational effort results from

the matrix multiplication ∂r
∂T

> ∂r
∂T

, where ∂r
∂T

has seven nonzero diagonals.

scalar product, while for all other elements only either one or two products need to
be computed. Using κ = j − i and (̂i, ĵ) ∈ N−1(κ), it holds that

(
dr>dr

)
i,j

=


∑

(̂i,ĵ)∈N−1(j−i)

(dri)i+î (drj)j+ĵ if j − i ∈ N ,

0 otherwise,

=


∑

(̂i,ĵ)∈N−1(j−i)

ρ̂i+î(−î) ρ̂j+ĵ(−ĵ) if j − i ∈ N ,

0 otherwise,

(32)

where, in a slight abuse of notation, ρ̂(−m1m2) should be interpreted as ρ̂(−z), etc.
With this and the explicit formulation of ρ̂i(k) in (23) and (25), the computational

cost of calculating dr>dr can be reduced substantially: multiplications involving zero
elements are no longer considered, administrative costs for locating and handling
sparse matrix elements have been eliminated, and only essential calculations remain.

Substituting (32) into the expression (29) for evaluating the matrix-vector product
q̂ = Ĥp̂, we obtain

q̂dm̄+i =
∑
κ∈N

∑
l∈{0,1,2}

∂Ti
∂Pdm̄+i

(
dr>dr

)
i,i+κ

∂Tκ
∂Plm̄+i+κ

p̂lm̄+i+κ(33)

for d ∈ {0, 1, 2}, using the definition of
(
dr>dr

)
i,i+κ

from (32).

Similar to the matrix-free gradient formulation in (28), this allows a direct com-
putation of each element of the result vector q̂ = Ĥp̂ fully in parallel and directly
from the input data. An implementation in pseudocode is shown in Algorithm 2.

4.2. Derivative computations for curvature regularization. In (11), a
matrix-free version of the curvature gradient computation was already given. As
the curvature computation is a quadratic function, the Hessian-vector multiplication

qi+dm̄y =
(
∇2Sp

)
i+dm̄y = 2h̄y∆̃

(
∆̃p
)
i+dm̄y

,(34)

for d ∈ {0, 1, 2}, is closely related, with p replacing u in (11). In contrast to NGF, this
uses the exact Hessian rather than a Gauss–Newton approximation. As the regularizer
operates on the deformation grid, no grid conversion is required.

MATRIX-FREE DEFORMABLE IMAGE REGISTRATION B871

Table 2
Offsets κ := j− i, for which 〈dri, drj〉 6= 0, corresponding to nonzero elements (dr>dr)i,j in the

matrix-product dr>dr. The preimage sets N−1(κ) characterize the locations of the nonzero element
in dri and drj . The 11 omitted cases are identical to the ones shown except for opposite sign. The
rightmost column shows the number of products involving nonzero coefficients in the evaluation of
〈dri, drj〉 and sums to |M| · |M| = 49.

κ ∈ N N−1(κ) |N−1(κ)|
−2m1m2 {(m1m2,−m1m2)} 1
−m1m2 −m1 {(m1,−m1m2), (m1m2,−m1)} 2
−m1m2 − 1 {(1,−m1m2), (m1m2,−1)} 2
−m1m2 {(0,−m1m2), (m1m2, 0)} 2
−m1m2 + 1 {(−1,−m1m2), (m1m2, 1)} 2
−m1m2 +m1 {(−m1,−m1m2), (m1m2,m1)} 2
−2m1 {(m1,−m1) 1
−m1 − 1 {(1,−m1), (m1,−1)} 2
−m1 {(0,−m1), (m1, 0)} 2
−m1 + 1 {(−1,−m1), (m1, 1)} 2
−2 {(1,−1)} 1
−1 {(0,−1), (1, 0)} 2

0 {(̂i, î) | î ∈M} 7
1 {(0, 1), (−1, 0)} 2
...

...
...

...

4.3. Grid conversion. We now consider the grid conversion steps omitted in the
previous sections. The grid conversion maps deformation values y ∈ R3m̄y

from the
deformation grid to the image grid using the function P : R3m̄y → R3m̄ (section 2.2).
In this section, we separately analyze P and its transpose P>.

The conversion, i.e., interpolation, of y from deformation grid to image grid is
performed using trilinear interpolation and thus can be written as a matrix-vector
product

ŷ = Py, with P ∈ R3m̄×3m̄y

and y ∈ R3m̄y

, ŷ ∈ R3m̄.

The transformation matrix P has a block-diagonal structure with three identical
blocks, each converting one of the three coordinate components of y. As the defor-
mation grid is a nodal grid, no boundary handling is required, as each (cell-centered)
image grid point is surrounded by deformation grid points.

In order to get closed-form expressions for the nonzero entries of P , define the

function cl(k) :=
(k+0.5)my

l

ml
, which converts a coordinate index from deformation to

image grid, and the remainder function rl(k) := cl(k) − bcl(k)c. Then, for the point

at coordinates (̂i, ĵ, k̂) with i = î+ ĵmx + k̂mxmy and d ∈ {0, 1, 2}, the interpolated
deformation value can be written as

(Py)î+ĵmx+k̂mxmy+dm̄ =

1∑
α=0

1∑
β=0

1∑
γ=0

wα,β,γ (̂i, ĵ, k̂) yξ(α,β,γ,̂i,ĵ,k̂,d),(35)

where the indices of the neighboring deformation grid points are

ξ(α, β, γ, î, ĵ, k̂, d) :=
(
bcx(̂i)c+ α

)
+mx

(
bcy(ĵ)c+ β

)
+mxmy

(
bcz(k̂)c+ γ

)
+ dm̄

(36)

B872 L. KÖNIG, J. RÜHAAK, A. DERKSEN, AND J. LELLMANN

Algorithm 2 Pseudocode for matrix-free computation of the elements of the result
vector q̂ in the NGF Hessian-vector multiplication Ĥp̂ = q̂ as in (29). The algorithm

can be fully parallelized over all loop iterations of î, ĵ, k̂, computing three elements of
the result per thread.

1: N← [−2m1m2,−m1m2−m1,−m1m2−1,−m1m2,−m1m2+1,−m1m2+m1,−2m1,−m1−1,−m1,

2: −m1 + 1,−2,−1, 0, 1, 2,m1 − 1,m1,m1 + 1, 2m1,m1m2 −m1,m1m2 − 1,m1m2,m1m2 + 1

3: m1m2 +m1, 2m1m2] . Initialize 25 indices in N; see Table 2
4: q← 0
5: for k̂ in [0,mz − 1] do
6: for ĵ in [0,my − 1] do

7: for î in [0,mx − 1] do

8: i← î+mxĵ +mxmyk̂ . Compute linear index
9: i± x, i± y, i± z ← as in (4) . Compute neighbor indices

10: [dTx, dTy, dTz]← imageDerivative(Ti+N)
11: . Compute image derivatives at 25 points
12: for k in [0, 24] do . Compute 25 values of dr>dr; see (33)
13: drdr← 0
14:

15: for (̃i, j̃) in N−1(N[k]) do
16: . Compute 49 values of ρ̂i; see (32) and Table 2
17: drdr ← drdr + ρ̂i+ĩ(−ĩ) · ρ̂i+N[k]+j̃(−j̃)
18: end for
19:

20: q[i]← q[i] + dTx[12] · drdr · dTx[k] · p̂i+N[k]

21: q[i+ m̄]← q[i+ m̄] + dTy[12] · drdr · dTy[k] · p̂i+N[k]+m̄

22: q[i+ 2m̄]← q[i+ 2m̄] + dTz[12] · drdr · dTz[k] · p̂i+N[k]+2m̄

23: . The 12th element corresponds to the derivative at index i
24: end for
25: end for
26: end for
27: end for
Output: q[i+ dm̄] = q̂dm̄+i

and the interpolation weights are given by

wα,β,γ (̂i, ĵ, k̂) := ŵαx (̂i)ŵβy (ĵ)ŵγz (k̂), ŵsl (k) :=

{
1− rl(k) if s = 0,

rl(k) otherwise.

As can be seen in (35), a single interpolated deformation value on the image grid is
simply a weighted sum of the values of its eight neighbors on the deformation grid;
see also Figure 3(a).

For the NGF derivative computations in (16) and (17), the left-sided multiplica-
tion ŷ>P = (P>ŷ)> is also required in order to evaluate the transposed operator.
For each (nodal) deformation grid point, this amounts to a weighted sum of values
from all image grid points in the adjacent deformation grid cells, which can be many
more than eight (Figure 3(b)).

By singling out the contribution of all image grid points within a single defor-
mation grid cell as in Figure 3(c), the weights ŵsl (k) can be reused and only need
to be computed once for each deformation grid cell. This suggests parallelizing the

MATRIX-FREE DEFORMABLE IMAGE REGISTRATION B873

w0,0
w1,0

w1,1
w0,1

y(0,0) y(1,0)

y(0,1) y(1,1)

(a)

y(1,1)

(b)

y(0,0) y(1,0)

y(0,1) y(1,1)

(c)

Fig. 3. Grid conversion operations (2D example). Circles: nodal deformation grid; squares:
cell-centered image grid. (a) Deformation grid to image grid: each value on the image grid is com-
puted by a weighted sum of the values of its deformation grid neighbors. (b) Transposed operation:
each value on the deformation grid is a weighted sum of all image grid values from neighboring de-
formation grid cells. (c) Transposed operation using the proposed red-black scheme. Weighted values
on the image grid are accumulated into all surrounding deformation grid points using multiple write
accesses. Weights need to be computed only once per cell. Parallelization is performed per row (2D)
or slice (3D) using a red-black scheme to avoid write conflicts.

computations on a per-cell basis. However, as a deformation grid point has multiple
neighboring grid cells, this would lead to write conflicts.

Therefore, in order to achieve both efficient reuse of weights and parallelizability,
we propose using a red-black scheme as shown in Figure 3(c). Each parallel unit
sequentially processes a single two-dimensional (2D) slice of deformation grid cells,
first all odd (red) and finally all even (black) slices.

4.4. Extension to related models. By carefully examining the derivative
structure of the NGF distance measure and curvature regularizer, we have derived
closed-form expressions for computing individual elements of the gradients as well as
Hessian matrix-vector products. The new formulations operate directly on the input
data, avoid storage of intermediate results (and thus costly memory accesses), and
allow for fully parallel execution.

It is important to note that the proposed approach is by no means conceptually
restricted to the NGF distance measure or curvature regularization. The central idea
of replacing sparse matrix construction by on-the-fly coefficient calculation for deriva-
tive computation is in principle applicable to all distance measures and regularization
schemes. The effectiveness, however, strongly depends on the derivative structure of
the considered objective function terms.

In more detail, consider an arbitrary distance measure D = ψ(r(T (P))). We first
observe that the proposed reformulation for the grid conversion operations related to
P as well as the image interpolation calculations for T are independent of the choice of
the distance metric. Hence, any matrix-free reformulation for these functions can be
applied to every choice of distance measureD. Since the derivative of ψ is just a vector,
the most critical part for a matrix-free computation is the residual function derivative
∂r
∂T . For NGF, the nonzero elements are distributed to just seven diagonals, thus

allowing us to derive a closed expression for ∂r
∂T . In the case of the well-known sum-

of-squared-differences (SSD) distance measure, the derivative ∂r
∂T is even the identity

and can thus be omitted from the computations [44].
More generally, matrix-free methods may be considered practically applicable as

long as the sparsity pattern of ∂r
∂T is known and fixed. Examples of suitable matrix

B874 L. KÖNIG, J. RÜHAAK, A. DERKSEN, AND J. LELLMANN

types are band matrices, block structures, and similar configurations. Unfortunately,
the widely used mutual information distance measure [10, 51] does not allow for such
application of the proposed matrix-free concept: here, the sparsity pattern of ∂r

∂T
depends on the image intensity distribution of the deformed template image and thus
on both T and the current deformation y [36]. As the deformation changes at each
iteration step, the sparsity pattern of ∂r

∂T may do so as well, prohibiting the derivation
of static matrix-free calculation rules. Again, however, the matrix-free grid change
schemes and the discussed template image derivative computations can directly be
reused also for mutual information.

For the regularization term, we note that widely used energies such as the diffusive
regularizer [13] or the linear-elastic potential [35] are essentially calculated using finite
differences schemes on the deformation y. Hence, their matrix-free computation is far
less complex than for the distance term with its function chain structure, and similar
techniques may directly be used, as done for the curvature regularization in this work.
Also, more complex regularization schemes such as hyperelastic regularization [5],
which penalizes local volume change and generates diffeomorphic transformations,
may be similarly implemented in a matrix-free manner.

In summary, the underlying idea of our work is widely applicable and not re-
stricted to the exemplary use case of NGF with curvature regularization. An inter-
esting question is what performance improvements can be expected for conceptually
different methods such as LDDMM [32]; we refer the reader to [33] for some notes on
parallelizing such methods.

5. Algorithm analysis. In this section, we will perform a theoretical analysis
and quantification of the expected speedup obtained by using the proposed matrix-free
approach, compared to a matrix-based approach as used in [36].

5.1. Matrix element computations and memory stores. While the exact
cost of sparse matrix multiplications is hard to quantify and highly depends on the
implementation and chosen sparse matrix format, meaningful estimates can be made
for the cost of matrix coefficient computations and memory stores. As in this section
we are primarily concerned with the time consumed by memory write accesses, by
“memory store” we refer to a single memory write operation. The amount of memory
required by each scheme is discussed in section 5.2.

5.1.1. Matrix-based approach.
Data term. For the NGF gradient, analyzing the structure of ∂ψ

∂r , ∂r
∂T , and ∂T

∂P
in (18), (26), and (27), an upper bound for the required number of nonzero element
computations can be computed.

The vector ∂ψ
∂r requires the computation of m̄ residual elements, where m̄ is the

number of cells in the image grid (section 2.2). For the matrix ∂r
∂T , with a seven-

banded structure, at most 7m̄ elements need to be computed, while ∂T
∂P contains at

most 3m̄ nonzero matrix elements.
The grid conversion, discussed in section 4.3, involves a matrix with eight coeffi-

cients in each row, one per contributing deformation grid point (35), resulting in the
computation of 8m̄ coefficients. In total, this gives 19m̄ coefficient computations for
the NGF term in the matrix-based scheme. As the matrix elements only depend on
the size of the image and deformation grids, they can be computed once and stored
for each resolution.

Regularizer. The curvature regularizer is a quadratic function and can be imple-
mented using a matrix with 25 diagonals, resulting in 25m̄y memory stores, where m̄y

MATRIX-FREE DEFORMABLE IMAGE REGISTRATION B875

is the number of cells in the deformation grid.
Hessian. For the Gauss–Newton Hessian-vector multiplication, no additional co-

efficient computations are needed, as the Hessian is approximated from first-order
derivatives.

Total number of operations. After computing all matrix elements, these have to
be stored in memory for later use, resulting in 19m̄+ 25m̄y memory store operations
for one evaluation of the full gradient and Hessian approximation. This assumes that
the latter will never be explicitly stored, as discussed in the following section. If
multiple matrix-vector multiplications with the same gradient are required, as in the
inner CG iterations, the factor matrices can be reused and no new memory stores are
necessary.

5.1.2. Matrix-free approach.
Data term. For the matrix-free formulation of the NGF gradient in (28), excluding

grid conversion, the same 11m̄ coefficient computations as in the matrix-based case
have to be performed for one evaluation of the gradient. However, no intermediate
storage of elements is needed.

For the grid conversion, the coefficients are recomputed during each gradient eval-
uation and Hessian-vector multiplication. Furthermore, they are recomputed during
the application of the transposed operator. With 8m̄ computations in each grid con-
version, this adds up to 16m̄ additional coefficient computations for application of the
forward and transposed operator compared to the matrix-based case.

In the proposed approach, the grid conversions are evaluated separately from the
remaining derivatives, instead of fully integrating them into the matrix-free compu-
tations. While the latter further lowers memory requirements, it requires recomputa-
tions of weights even within a single conversion, which in our experience resulted in
slower overall computation times.

Regularizer. For the curvature regularizer, the coefficients are highly redundant,
resulting from the finite differences stencil. Therefore, there is no computational cost
for coefficients in the matrix-free scheme.

Hessian. For the matrix-free Gauss–Newton Hessian-vector multiplication, a num-
ber of elements are recomputed. As shown in (33) and (32), coefficients ρ̂i(k) are
computed 2 · 49m̄ times for one Hessian-vector multiplication. With 25 diagonals in
dr>dr, image derivatives from ∂T

∂P are required for 25 points, resulting in additional
25m̄ coefficient computations. In total, the Hessian-vector multiplication requires
123m̄ additional coefficient computations compared to the matrix-based method.

Note that, in the matrix-based case, we have assumed that the full Hessian is
never stored but rather evaluated using its factor matrices (Figure 2). If the final
Hessian is also saved, an additional 9 · 25m̄ memory stores are required, as dr>dr
exhibits 25 diagonals.

While in both schemes the gradient is fully stored once computed and can be
reused, for the matrix-free Hessian-vector multiplication, all elements need to be re-
computed for every single matrix-vector multiplication. Therefore, the exact number
of additional arithmetic operations depends on other variables, such as the number
of CG iterations and line-search steps, and is specific to the input data.

Total number of operations. In summary, for matrix-free NGF gradient evalua-
tions, there are no additional coefficient computations compared to the matrix-based
scheme and all intermediate memory stores are completely eliminated, making it
highly amenable to massive parallelization.

For the Gauss–Newton Hessian-vector multiplications, the matrix-free scheme

B876 L. KÖNIG, J. RÜHAAK, A. DERKSEN, AND J. LELLMANN

adds a considerable number of recomputations, but again no stores are required.
However, memory store operations are generally orders of magnitude slower than
arithmetic operations. Therefore, as will be shown in the next section, in practice this
trade-off between computations and memory stores results in faster overall runtimes.
Moreover, it significantly reduces the amount of required memory, which is a severely
limiting factor for Hessian-based methods.

5.2. Memory requirements. As discussed in the previous section, the memory
required for the derivative matrices in a classical matrix-based scheme depends on the
image grid size m̄. For the gradient computations, when storing ∂ψ

∂P , ∂r
∂T , and ∂T

∂P , m̄,
7m̄, and 3m̄ values need to be saved. For the grid conversion, 8m̄ values need to be
stored, while the curvature regularizer requires 25m̄y values. In terms of complexity,
this leads to memory requirements in the order of O(m̄).

In comparison, the memory required by the matrix-free schemes does not depend
on the image grid size. When integrating the grid conversion steps directly into the
computation, as described in the previous section, only constant auxiliary space is
required. The matrix-free approach therefore reduces the required memory size for
intermediate storage from O(m̄) to O(1).

6. Experiments and results. In order to characterize the performance at the
implementation level, we performed a range of experiments comparing four approaches
for derivative computation. Three approaches are implemented on the CPU: an open-
source, mixed C and MATLAB implementation in the FAIR toolbox [36] (“FAIR”), an
in-house C++ implementation of the matrix-based computations using sparse matri-
ces (“MBC”), and a C++ implementation of the proposed matrix-free computations
(“MFC”). Additionally, we evaluated a GPU implementation of the matrix-free com-
putations using NVIDIA CUDA (“MFCGPU”).

All CPU implementations use OpenMP for parallelization of critical components.
In FAIR and MBC, these include distance measure computations, linear interpola-
tion, and sparse-matrix multiplications. FAIR provides a “matrix-free” mode, which
uses matrix-free computations for the curvature regularizer. In contrast to our ap-
proach, all other derivative matrices are still built explicitly and require additional
storage and memory accesses. This mode was used for all comparisons. Further-
more, MATLAB-MEX versions of FAIR components were used where available. In
the matrix-free method MFC, full elementwise parallelization was used for function
value and derivative calculations.

Both the classical MBC and the proposed MFC implementations have undergone
thorough optimization. In addition, due to the favorable structure, the NGF gradient
computations for MFC on the CPU were manually vectorized using the Intel Ad-
vanced Vector Instructions (AVX). As stated in section 4.3, the grid conversions were
computed as separate steps. Additionally, the deformed template was temporarily
stored in order to reduce interpolation calls.

The experiments on the CPU were performed on a dual processor 12-core Intel
Xeon E5-2620 workstation with 2.0 GHz and 32 GB RAM. The GPU computations
were performed on a NVIDIA GeForce GTX980; see section 6.3 for more detailed
specifications. All experiments were averaged over 30 runs with identical input in
order to reduce measurement noise.

6.1. Scalability. The proposed matrix-free derivative calculations permit a fully
parallel execution with only a single reduction for the function value, leading to high
arithmetic intensity, i.e., floating point operations per byte of memory transfer. Thus,

MATRIX-FREE DEFORMABLE IMAGE REGISTRATION B877

Table 3
Scaling of the proposed parallel implementation on a 12-core workstation compared to serial

computation. Runtimes and speedups are itemized for gradient evaluations, Hessian-vector mul-
tiplications, and grid conversions. All operations scale almost linearly, with the exception of the
transposed grid conversion operator P>ŷ on small images, where the number of available parallel
tasks is too low, and the curvature regularizer, which is primarily memory-bound. Small images: 643

image resolution, 173 deformation grid size; large images: 5123 image resolution, 1293 deformation
grid size.

Small images Large images
Method Serial (ms) Par. (ms) Speedup Serial (s) Par. (s) Speedup

D 65.6 5.94 11.0 44.6 3.31 13.5
∂D
∂P

131 10.6 12.4 72.9 5.40 13.5
Py 8.95 0.743 12.1 4.51 0.355 12.7

P>ŷ 9.91 2.27 4.34 7.14 0.58 12.4

Ĥp̂ 1450 117 12.4 913 61.1 15.0

S 0.101 0.0655 1.54 0.0553 0.0167 3.31
∇S 0.226 0.0411 5.51 0.110 0.0428 2.58

∇2Sp 0.224 0.0450 4.98 0.109 0.0371 2.94

excellent scalability with respect to the number of computational cores can be ex-
pected.

In order to experimentally support this claim, we computed objective function
derivatives using a varying number of computational cores on CPU. Two cases were
considered: small images (643 voxels), typically occurring in multilevel computations
of medical images, and larger images (5123 voxels), representing, e.g., state-of-the-art
thoracic CT scans.

As can be seen from the results in Table 3, for both image sizes, all NGF
evaluations—function value, gradient, and Hessian-vector multiplication—exhibit the
expected speedup factors ranging from 11.0 to 15.0 on a 12-core system. Grid conver-
sions from deformation grid to image grid also show speedups of approximately 12.
For the transposed operator, on small images, a speedup of only 4.34 is achieved: due
to the small number of parallel tasks available, not all computational cores can be
fully utilized. On the large images, the expected speedup of 12.4 is achieved.

In comparison, the curvature regularizer scales much less favorably, with speedups
ranging from 1.54 to 4.90. As the implementation of the curvature regularizer deriva-
tives is fully parallelized and matrix-free, this indicates that the curvature computa-
tion is limited by memory bandwidth rather than arithmetic throughput. However,
this has little effect on the overall performance, as the evaluation of the curvature
regularizer is multiple orders of magnitude faster than the NGF evaluation.

6.2. Runtime comparison. As discussed in section 5, the matrix-free approach
reduces the memory consumption and improves parallelization; however, it introduces
additional cost due to multiple recalculations. Therefore, it is interesting to compare
in detail the runtime of the matrix-free implementation MFC to the matrix-based
implementations MBC and FAIR.

6.2.1. Derivative and Hessian evaluation. We separately evaluated run-
times for computation of the derivatives and for matrix-vector multiplication with
the Gauss–Newton Hessian, including grid conversions.

Image sizes ranged from 643 to 5123 voxels. To account for various use cases
with different requirements for accuracy, we tested three different resolutions for the
deformation grid: full resolution, 1/4 of the image resolution, and 1/16 of the image

B878 L. KÖNIG, J. RÜHAAK, A. DERKSEN, AND J. LELLMANN

Table 4
Runtimes (left) and speedup factors (right) for objective function gradient computations (top)

and Hessian matrix-vector multiplications (bottom) on CPU. Three implementations were compared:
a classical matrix-based implementation from the FAIR toolbox (FAIR), an optimized matrix-based
C++ implementation (MBC), and the proposed matrix-free approach (MFC). For each image grid
size mi, three different deformation grid sizes my

i were tested. The proposed matrix-free approach
MFC achieves speedups of 2.34–11.4 (derivatives) and 17.9–159 (Hessian multiplications) compared
to the optimized C++ implementation MBC (rightmost column). It can also handle high resolutions
for which FAIR and MFC run out of memory (third and fourth columns, marked ∗).

Runtime Speedup
MBC MFC MFC

mi my
i FAIR (s) MBC (s)

MFC (s) vs. vs. vs.
(Proposed) FAIR FAIR MBC

G
ra

d
ie

n
t

512 513 * * 15.39 – – –
129 * * 4.61 – – –
33 * * 4.48 – – –

256 257 * * 1.37 – – –
65 155.62 5.42 0.57 28.7 275.0 9.6
17 129.90 5.37 0.60 24.2 214.8 8.9

128 129 19.57 1.70 0.19 11.5 104.5 9.1
33 17.25 0.78 0.07 22.1 252.4 11.4
9 14.45 0.80 0.12 18.1 125.5 6.9

64 65 2.31 0.26 0.05 8.8 44.8 5.1
17 1.94 0.11 0.01 17.7 196.8 11.1
5 1.58 0.11 0.05 14.4 33.7 2.3

H
es

si
a
n

-v
ec

to
r

m
u

lt
.

512 513 * * 83.14 – – –
129 * * 64.46 – – –
33 * * 64.28 – – –

256 257 * * 8.18 – – –
65 * * 7.51 – – –
17 230.75 * 7.58 – 30.4 –

128 129 * * 1.06 – – –
33 36.28 27.84 1.01 1.3 35.9 27.5
9 24.44 21.37 1.01 1.1 24.1 21.1

64 65 25.20 20.55 0.13 1.2 195.5 159.5
17 4.05 3.38 0.12 1.2 32.5 27.1
5 2.56 2.52 0.14 1.0 18.2 17.9

resolution. As can be seen from the results in Table 4, for the gradient computation,
we achieve speedups from 33.7 to 275 relative to FAIR. Furthermore, FAIR runs out
of memory at larger image and deformation grid sizes. Here, the matrix-free scheme
allows for computations at much higher resolutions.

Relative to the matrix-based C++ implementation MBC, we achieve speedups
between 2.34 and 11.4. These values are particularly remarkable if one considers that
MBC is already highly optimized and parallelized, and that MFC includes a large
amount of redundant computations. Again, MFC allows us to handle the highest
resolution of 5123, while MBC runs out of memory at 2563 voxels.

Comparing the runtimes of the Hessian-vector multiplication in Table 4, the ben-
efits of the low memory usage of MFC become even more obvious. While MBC and
FAIR cannot be used for more than half of the resolutions tested, MFC has no such
issues and scales approximately linear in the number of voxels. MFC achieves par-
ticularly high speedups for large deformation grids compared to the optimized C++
implementation MBC, ranging from 17.9 to 159.

MATRIX-FREE DEFORMABLE IMAGE REGISTRATION B879

5123 2563 1283 643 5123 2563 1283 643

100

101

102

103

104

1
,0

5
5

1
2
0

1
8
.1

1
2
,3

1
4

8
6
9

1
8
0

2
5
.1

4
.4

8

1
,9

8
6

3
5
7

1
5
5

1
9
.4

2
.6 0
.5

2

4
4
,5

5
3

4
,2

9
9

6
3
7

5
7
.2

R
u

n
ti

m
e

(s
)

FAIR
MBC

MFC (Proposed)

* * * * * *

L-BFGS Gauss–Newton

Fig. 4. Runtime comparison for a full multilevel registration on CPU using L-BFGS and
Gauss–Newton optimization schemes for different image sizes (logarithmic scale). FAIR: matrix-
based, MATLAB, using the FAIR toolbox [36]; MBC: matrix-based, C++, using sparse matrices;
MFC: proposed matrix-free algorithm in C++; ∗: computation ran out of memory. Deformation
grid sizes were set to one quarter of the image size in each dimension. The proposed algorithm
(MFC) enables faster computations at higher resolutions for both optimization schemes and routinely
handles resolutions of up to 5123 voxels.

Table 5
Speedup factors of the proposed matrix-free approach on CPU (MFC is n times faster) relative

to the matrix-based MBC and MATLAB-based FAIR methods for the data in Figure 4. ∗: FAIR or
MBC ran out of memory.

L-BFGS Gauss–Newton
5123 2563 1283 643 5123 2563 1283 643

MFC vs. FAIR * 54.4 46.1 34.8 * * 19.4 15.2
MFC vs. MBC * 9.27 9.67 8.62 * * 3.12 6.25

6.2.2. Full registration. The ultimate goal of the presented approach is to im-
prove runtime and memory usage of the full image registration system in real-world
applications. Therefore, we performed a range of full multilevel image registrations
on three levels for different image and deformation grid sizes with all three imple-
mentations. The input data consisted of thorax-abdomen images, as described in
section 6.4.2 below, cropped to a size of 5123 voxels. In order to avoid potentially
large runtime differences caused by the effect of small numerical differences on the
stopping criteria, we set a fixed number of 20 iterations on each resolution level.

For L-BFGS, the proposed method MFC is between 8.62 and 9.27 times faster
than MBC (Figure 4 and Table 5). Computation on the highest resolution with an
image size of 5123 and deformation grid size of 1293 is only possible using MFC due
to memory limitations of the other methods.

For Gauss–Newton, overall speedups range from 3.12 to 6.25. Additionally, due
to the more memory-intense Hessian computations, even a registration with an image
size of 2563 and a modest deformation grid size of 653 could only be performed with
the proposed MFC method.

While for L-BFGS the overall speedups are in a range similar to the raw speedups
in Table 4, they are slightly reduced for the Gauss–Newton method. This is due to the
fact that in the matrix-based MBC method, the stored NGF Hessian is reused multiple

B880 L. KÖNIG, J. RÜHAAK, A. DERKSEN, AND J. LELLMANN

Table 6
Total peak memory usage in megabytes for the full multilevel registration on CPU, correspond-

ing to the data in Figure 4. Reported sizes include objective function derivatives, multilevel repre-
sentations of the images, memory required for the optimization algorithm, CG solver, and further
auxiliary space. Compared to MBC and FAIR, the proposed algorithm (MFC) enables computations
at high resolutions with moderate memory use. ∗: FAIR or MBC ran out of memory (more than
32 GB required).

L-BFGS Gauss–Newton
5123 2563 1283 643 5123 2563 1283 643

MFC 4914 618 78 10 4296 539 68 9
MBC * 14 673 1837 230 * * 5658 725
FAIR * 17 422 2403 543 * * 4375 800

times in the CG solver, while it is recomputed for each evaluation in the matrix-free
MFC approach. Solving a linear system with the CG solver using the NGF Hessian
is only needed for Gauss–Newton optimization, which could additionally impose a
performance bottleneck. In our evaluations, however, we found that, while the CG
solver consumes 97% to 99% of the total registration runtime, the matrix-free NGF
Hessian-vector multiplications again consume more than 99% of the overall CG solver
runtime, which can thus fully benefit from our parallelized computations.

The memory usage of the full multilevel registration for all approaches is shown
in Table 6. Besides the objective function derivatives, the measured memory usage
includes memory required for multilevel representations of the images, the optimiza-
tion algorithm, the CG solver, and further auxiliary space. The matrix-free approach
reduces memory requirements by one to two orders of magnitude. As the L-BFGS
method uses additional buffers for storing previously computed gradients, the Gauss–
Newton method has a lower memory usage with the matrix-free approach.

Overall, the proposed efficient matrix-free method enables both computation of
higher resolutions and shorter runtimes.

6.3. GPU implementation. The presented matrix-free algorithm is not lim-
ited to a specific platform or processor type. Due to its parallelizable formulation
and low memory requirements, it is also well-suited for implementation on specialized
hardware such as GPUs. In comparison to CPUs, GPUs feature a massively paral-
lel architecture and excellent computational performance. Thus, GPUs have become
increasingly popular for general purpose computing applications [47]. However, in or-
der to utilize these benefits, specialized implementations are required, which exploit
platform-specific features such as GPU topology and different memory classes.

In this section, we present a GPU implementation of the matrix-free registration
algorithm using NVIDIA CUDA C/C++ [40]. The CUDA framework allows for a
comparatively easy implementation and direct access to hardware-related features
such as different memory and caching models and has been widely adopted by the
scientific community [47]. We implemented optimized versions of all parts of the
registration algorithm in CUDA, allowing the full registration algorithm to run on
the GPU without intermediate transfers to the host. In the following, we present
details on how the implementation makes use of the specialized platform features in
order to improve performance.

6.3.1. Implementation details. The CUDA programming model organizes the
GPU code in kernels, which are launched from the host to execute on the GPU. The
kernels are executed in parallel in different threads, which are grouped into thread

MATRIX-FREE DEFORMABLE IMAGE REGISTRATION B881

blocks.
Memory areas. CUDA threads have access to different memory areas: global

memory, constant memory, and shared memory. All data has to be transferred from
the CPU main memory to the GPU global memory before it can be used for GPU
computations. As frequent transfers can limit computational performance, the GPU
implementation transfers the initial images R, T exactly once at the beginning of
the registration. All computations, including the creation of coarser images for the
multilevel scheme, are then performed entirely in GPU memory.

While the global memory is comparatively large (up to 16 GB on recent Tesla
devices) and can be accessed from all threads, access is slow because caching is limited.
Constant and shared memory, in contrast, are very fast. However, constant memory
is read-only, while shared memory can only be accessed within the same thread block.
Both are currently limited to 48 to 96 kB, depending on the architecture.

We therefore store frequently used parameters such as m,my, m̄, h, hy, h̄ in con-
stant memory to minimize access times. Shared memory (private per block) is used
for reductions in L-BFGS and function value, with an efficient scheme from [20].

Image interpolation. Current GPUs include an additionally specialized memory
area for textures. Texture memory stores the data optimized for localized access in 2D
or 3D coordinates and provides hardware-based interpolation and boundary condition
handling. Therefore, we initially employed texture memory for the image interpola-
tion of the deformed template image T (ŷ). However, we found that the hardware
interpolation causes errors on the order of 10−3 in comparison to the CPU imple-
mentation, as the GPU only uses 9-bit fixed-point arithmetic for these computations.
The errors resulted in erroneous derivative calculations, causing the optimization to
fail. Despite an interpolation speedup of approximately 35% with texture memory,
we therefore performed the interpolation in software within the kernels rather than
in hardware.

Grid conversion. In section 4.3, a red-black scheme for the transposed operator
P>y was proposed in order to avoid write conflicts in parallel execution. While on
the CPU this results in fast calculations, on the GPU there are specialized atomics
available to allow for fast simultaneous write accesses without conflicts. This enables a
per-point parallel implementation without the red-black scheme, which also improves
the limited speedup for small images shown in Table 3. We took care that all GPU
computations return identical results to the CPU code with the exception of numerical
and rounding errors, in order to allow for a meaningful comparison.

6.3.2. Evaluation. Experiments were performed on a GeForce GTX980 graph-
ics card with 4 GB of memory. The GPU features 16 streaming multiprocessors with
128 CUDA cores each, resulting in 2048 CUDA cores in total for parallelization, and
a theoretical peak performance of 4.6 TFLOPs for single-precision computations. The
double-precision peak performance is much lower at 144 GFLOPs, which is less than
the 192 GFLOPs achieved by the dual-CPU Xeon E5-2620 that was used for the CPU
computations. Additionally, the previously mentioned atomics are only available for
the single-precision float datatype. Therefore, all computations were performed in
single precision. In order to minimize the effect of rounding errors, an exception was
made for reductions, which were computed in double precision.

Comparing the peak performances of CPU and GPU, the theoretical maximum
speedup is a factor of 20. While this maximum value is hard to obtain in practice,
we will see that using the GPU can still lead to a substantial acceleration of the
registration algorithm. To this end, we implemented a 2D image registration with the

B882 L. KÖNIG, J. RÜHAAK, A. DERKSEN, AND J. LELLMANN

Table 7
Runtimes (left) and speedup factors (right) for objective function gradient computations using

the proposed matrix-free method, implemented on CPU (MFC) and GPU (MFCGPU) in two dimen-
sions. For each image grid size mi, three different deformation grid sizes my

i were tested. The
GPU-based implementation achieves additional speedup factors of up to 10.1 in comparison to the
matrix-free CPU implementation. The speedup increases with larger image and deformation grid
sizes.

Runtime Speedup
mi my

i MFC (ms) MFCGPU (ms) MFCGPU vs. MFC

4096 2049 357 35.3 10.1
1025 289 33.5 8.63
513 286 32.3 8.85

2048 1025 96.7 10.0 9.67
513 72.3 9.38 7.71
257 74.3 9.32 7.97

1024 513 19.7 3.66 5.38
257 16.2 3.53 4.59
129 16.0 2.93 5.46

512 257 4.67 2.29 2.04
129 4.02 1.67 2.41
65 3.96 1.67 2.37

256 129 1.27 1.04 1.22
65 1.16 1.03 1.13
33 2.68 1.07 2.50

L-BFGS optimizer. As GPU implementations of FAIR and MBC are not available,
we compare the results to the matrix-free CPU implementation MFC.

Derivative. Similar to section 6.2.1 and Table 4, we measured the runtime for the
evaluation of the objective function derivative. The results are compared with the
matrix-free algorithm on CPU in Table 7 for different image and deformation grid
resolutions. Realistic speedups are in the range between 1.13 and 10.1. Relative GPU
performance benefits from higher resolutions, with a maximum speedup at the full
image size of 40962 pixels and a deformation grid size of 20492.

Full registration. We performed a full multilevel registration with three levels
for different image and deformation grid sizes analogous to how it was done in sec-
tion 6.2.2. The input consisted of patches of 40962 pixels in size from histological
serial sections of tumor tissue, which were differently stained and scanned in a high
resolution [31], as shown in Figure 5. Here, image registration allows us to align adja-
cent slices, evaluate different stains on the same slice, and compensate for deformation
from the slicing process. Before registration, the images were rigidly prealigned and
converted to gray-scale.

The matrix-free GPU implementation is compared to the corresponding matrix-
free CPU implementation in Figure 6. We used a maximum of 20 iterations per level
to ensure comparable runtimes. Depending on the image size, speedups from 1.04 to
9.21 are achieved. As before, compared to the CPU code, the highest speedup of 9.21
is achieved at the finest image resolution of 40962 pixels, since more parallel threads
can be distributed on the GPU CUDA cores, resulting in a better GPU utilization.

Summary. While the proposed approach is well-suited for GPUs due to its high
parallelizability, implementation requires careful consideration of the architecture’s
specifics. In particular, available memory types need to be fully utilized and unneces-
sary transfers avoided. While the slightly reduced accuracy has to be accounted for,

MATRIX-FREE DEFORMABLE IMAGE REGISTRATION B883

(a) Reference (b) Template (c) Initial overlay (d) After registration

Fig. 5. Registration of patches from histological serial sections with different stains on GPU.
(a) reference image, (b) template image, (c) checkerboard overlay of details from both images before
registration, and (d) from both images after registration. While discontinuities can be seen at the
borders of the checker pattern before registration, smooth transitions are achieved after registration.
Areas of large differences are indicated by arrows. The images were obtained from the publicly
available dataset used in [31].

40962 20482 10242 5122 2562

10−1

100

101

1
3
.9

3
.3

5

0
.8

5
3

0
.2

3
8

0
.0

8
6
5

1
.5

1

0
.5

6

0
.2

6
7 0
.1

4
3

0
.0

8
3
3R

u
n
ti

m
e

(s
)

MFC

MFCGPU

(a)

Speedup

mi MFCGPU vs. MFC

4096 9.21
2048 5.98
1024 3.19
512 1.66
256 1.04

(b)

Fig. 6. Runtime comparison for a full multilevel registration on CPU and GPU. (a) runtimes
for CPU-based (MFC) and GPU-based (MFCGPU) implementations of the proposed matrix-free algo-
rithm for different image sizes (logarithmic scale), (b) corresponding speedup factors. Deformation
grid sizes were set to one quarter of the image size in each dimension. In comparison to the CPU
implementation, the GPU implementation achieves an additional speedup of up to 9.21. The largest
runtime improvements are achieved for high image resolutions.

other features such as atomics can be used to reduce the code complexity without
sacrificing performance. Overall, we achieved realistic speedups of about one order of
magnitude compared to a CPU implementation.

6.4. Medical applications. For the CPU implementation of the matrix-free
algorithm, we additionally studied two medical applications of the proposed approach
in order to demonstrate the suitability for real-world tasks and to show its potential for
clinical use. We used the L-BFGS method for these experiments—while in practice it
required more iterations than the Gauss–Newton scheme, overall runtime was faster.

6.4.1. Pulmonary image registration. This medical application requires reg-
istration of maximum inhale and exhale images of four-dimensional (4D) thorax CT
(4DCT) scans. The results can be used to assess local lung ventilation and aid the
planning of radiation therapy of lung cancer [23].

B884 L. KÖNIG, J. RÜHAAK, A. DERKSEN, AND J. LELLMANN

Table 8
Average landmark errors in millimeters and execution times on CPU in seconds for the DIR-

Lab 4DCT datasets after affine-linear prealignment (Initial) and after deformable registration (Pro-
posed). Compared to other results reported on the benchmark page [7], the proposed algorithm
achieves the lowest mean distance at the time of this writing, with an average runtime of 9.23 s;
see also section 6.4.1 for a comparison.

Dataset Initial (mm) Proposed (mm) Runtime (s)

4DCT1 3.89± 2.78 0.81± 0.89 6.68
4DCT2 4.34± 3.90 0.75± 0.85 8.56
4DCT3 6.94± 4.05 0.92± 1.05 6.78
4DCT4 9.83± 4.86 1.34± 1.28 7.08
4DCT5 7.48± 5.51 1.06± 1.44 7.74

4DCT6 10.89± 6.97 0.86± 0.96 11.64
4DCT7 11.03± 7.43 0.83± 1.01 12.30
4DCT8 14.99± 9.01 1.02± 1.32 13.75
4DCT9 7.92± 3.98 0.88± 0.94 7.85
4DCT10 7.30± 6.35 0.84± 1.00 9.93

Mean 8.46± 5.48 0.93 ± 1.07 9.23

For benchmarking, we used the publicly available DIR-Lab database [8, 6], which
consists of 10 4DCT scans. The maximum inhale and exhale images come with 300
expert-annotated landmarks each for evaluation of the registration accuracy. All
images have voxel sizes of approximately 1 mm× 1 mm× 2.5 mm.

As is common in pulmonary image registration, prior to registration the lungs
were segmented and the images were cropped to the lung region [37]. The segmen-
tation masks were generated with the fully automatic algorithm proposed in [29].
The cropped images were first coarsely registered with an affine-linear transformation
model, the final result serving as an initial guess for the main deformable registra-
tion. Prior to deformable registration, the images were isotropically resampled in the
z-direction to match the x-y plane resolution.

A multiresolution scheme with four levels was used, with the finest level being the
image at full resolution. The deformation resolution was chosen four times coarser
than the image resolution on the finest level. For each coarser level, the number of
cells per dimension was halved. The regularizer weight was set to α = 1 and the
NGF filter parameters to %, τ = 10. The parameters were determined manually by
evaluating several different parameter sets, and we also found them to be suitable for
lung registration in other applications.

Table 8 summarizes the results and measured runtimes using the L-BFGS op-
timization method. At an average runtime of 9.23 s, the average landmark error is
below the voxel diameter at 0.93 mm. The average landmark error is also the lowest
reported in the public benchmark [7] at the time of this writing. In comparison, the
most recent submission to the benchmark in [52] reports an average landmark error
of 0.95± 1.15mm, with a much longer average runtime of 180 s. Two other methods
[42, 22] achieve errors of 0.95±1.07mm. Only does the author of [22] report a runtime,
stating 98 s on average.

6.4.2. Oncological followup. As a second medical application of the proposed
registration scheme, we considered oncological followup in the thorax-abdomen re-
gion. Here, CT scans are acquired at different time points—typically a few months
apart—with the goal of assessing the development of tumors, e.g., during chemother-
apy. Deformable registration is then employed to propagate prior findings to the

MATRIX-FREE DEFORMABLE IMAGE REGISTRATION B885

current scan, facilitate side-by-side comparison of the same structures at multiple
time points via cursor or slice synchronization, and visualize and highlight change by
image subtraction.

On state-of-the-art scanners, the resolution of such CT scans is approximately
0.7 mm isotropic, leading to a challenging image size of ≈ 512× 512× 900, depending
on the size of the scanned region. To the best of our knowledge, no public data with
expert annotations is available for evaluating registration accuracy. We therefore
restricted ourselves to visual assessment and runtime comparison on images from
clinical routine (first scan: 512 × 512 × 848 voxels; second scan: 512 × 512 × 833
voxels), acquired approximately nine months apart.

A multiresolution scheme with three levels was used, with one quarter of the
original image resolution at the finest level. On each level, the deformation resolution
was half the current image resolution. Further increasing the deformation resolution
did not improve results, which is also supported by the findings in [24, 41]. The model
parameters were manually chosen as α = 10 and %, τ = 5.

Using the proposed method, we obtain qualitatively satisfying results (Figure 1)
in a clinically acceptable runtime of 12.6 s, enabling online registration of thorax-
abdomen CT scans for follow-up examinations.

7. Summary and conclusions. We presented a novel computational approach
for deformable image registration based on the widely used normalized gradient fields
distance measure and curvature regularization. Through detailed mathematical anal-
ysis of the building blocks, we derived a new matrix-free formulation, which tackles
two main bottlenecks of the employed registration algorithm.

First, it enables effective parallelization. The most-used components exhibit vir-
tually linear scalability (section 6.1), efficiently utilizing multiple computational cores
on modern CPUs. This leads to an average reduction in overall runtime by a factor
of 45.1 for L-BFGS optimization (Gauss–Newton: 17.3) compared to a MATLAB
implementation, and 9.19 for L-BFGS optimization (Gauss–Newton: 4.69) compared
to a sparse matrix-based, optimized C++ implementation, despite necessary recom-
putations of intermediate values. Our GPU-based implementation of the matrix-free
registration approach, exploiting the massively parallel architecture, achieves a further
speedup of 9.21 compared to an optimized CPU-based implementation.

Second, the presented method largely reduces the memory requirements of the
registration algorithm. As shown in Table 4, even medium resolutions cannot be
handled using matrix-based approaches, while the matrix-free scheme is ultimately
only limited by runtime.

Experiments showed that the presented algorithm is able to solve real-world clin-
ical registration tasks with high accuracy at fast runtimes. In the DIR-Lab 4DCT
benchmark for lung registration, we achieve the best mean distance among all sub-
missions at an average runtime of 9.23 s. In thorax-abdomen registration for oncology
screening, large images could be processed within 12.6 s, potentially allowing for online
assessment by clinicians.

The presented scheme allows for efficient image registration on much higher reso-
lutions than previously possible and shows a substantial speedup over existing imple-
mentations. It is not tied to a specific platform or CPU type and is very suitable for
implementation on GPUs, enabling a wider use of rapid deformable image registration
in various applications.

Acknowledgment. We thank Martin Meike for providing the GPU implemen-
tation developed in his thesis [34].

B886 L. KÖNIG, J. RÜHAAK, A. DERKSEN, AND J. LELLMANN

REFERENCES

[1] B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, Symmetric diffeomorphic image
registration with cross-correlation: Evaluating automated labeling of elderly and neurode-
generative brain, Med. Image. Anal., 12 (2008), pp. 26–41.

[2] R. Berg, L. König, J. Rühaak, R. Lausen, and B. Fischer, Highly efficient image registra-
tion for embedded systems using a distributed multicore DSP architecture, J. Real-Time
Image Process., 14 (2018), pp. 341–361.

[3] C. Broit, Optimal Registration of Deformed Images, Ph.D. thesis, University of Pennsylvania,
Philadelphia, 1981.

[4] P. Bui and J. Brockman, Performance analysis of accelerated image registration using
GPGPU, in Proceedings of 2nd ACM Workshop on General Purpose Processing on Graph-
ics Processing Units, 2009, pp. 38–45.

[5] M. Burger, J. Modersitzki, and L. Ruthotto, A hyperelastic regularization energy for
image registration, SIAM J. Sci. Comput., 35 (2013), pp. B132–B148, https://doi.org/10.
1137/110835955.

[6] E. Castillo, R. Castillo, J. Martinez, M. Shenoy, and T. Guerrero, Four-dimensional
deformable image registration using trajectory modeling, Phys. Med. Biol., 55 (2010),
pp. 305–327.

[7] R. Castillo, DIR-Lab Results. https://www.dir-lab.com/Results.html (accessed: 2017-04-10).
[8] R. Castillo, E. Castillo, R. Guerra, V. E. Johnson, T. McPhail, A. K. Garg, and

T. Guerrero, A framework for evaluation of deformable image registration spatial accu-
racy using large landmark point sets, Phys. Med. Biol., 54 (2009), pp. 1849–1870.

[9] C. R. Castro-Pareja, J. M. Jagadeesh, and R. Shekhar, FAIR: A hardware architecture
for real-time 3-D image registration, IEEE Trans. Inf. Technol. Biomed., 7 (2003), pp. 426–
434.

[10] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Marchal,
Automated multi-modality image registration based on information theory, in Informa-
tion Processing in Medical Imaging, Vol. 3, Springer, Dordrecht, The Netherlands, 1995,
pp. 263–274.

[11] V. De Luca, T. Benz, S. Kondo, L. König, D. Lübke, S. Rothlübbers, O. Somphone,
S. Allaire, M. L. Bell, D. Chung, et al., The 2014 liver ultrasound tracking benchmark,
Phys. Med. Biol., 60 (2015), pp. 5571–5599.

[12] A. Eklund, P. Dufort, D. Forsberg, and S. M. LaConte, Medical image processing on the
GPU – Past, present and future, Med. Image. Anal., 17 (2013), pp. 1073–1094.

[13] B. Fischer and J. Modersitzki, Fast diffusion registration, in Inverse Problems, Image Anal-
ysis, and Medical Imaging, Contemp. Math. 313, AMS, Providence, RI, 2002, pp. 117–128.

[14] B. Fischer and J. Modersitzki, Curvature based image registration, J. Math. Imaging Vision,
18 (2003), pp. 81–85.

[15] C. J. Galbán, M. K. Han, J. L. Boes, K. A. Chughtai, C. R. Meyer, T. D. Johnson,
S. Galbán, A. Rehemtulla, E. A. Kazerooni, F. J. Martinez, et al., Computed
tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes
and disease progression, Nat. Med., 18 (2012), pp. 1711–1715.

[16] F. Gigengack, L. Ruthotto, M. Burger, C. H. Wolters, X. Jiang, and K. P. Schafers,
Motion correction in dual gated cardiac PET using mass-preserving image registration,
IEEE Trans. Med. Imag., 31 (2012), pp. 698–712.

[17] E. Haber, S. Heldmann, and J. Modersitzki, An octree method for parametric image
registration, SIAM J. Sci. Comput., 29 (2007), pp. 2008–2023, https://doi.org/10.1137/
060662605.

[18] E. Haber, S. Heldmann, and J. Modersitzki, Adaptive mesh refinement for nonparametric
image registration, SIAM J. Sci. Comput., 30 (2008), pp. 3012–3027, https://doi.org/10.
1137/070687724.

[19] E. Haber and J. Modersitzki, Beyond mutual information: A simple and robust alternative,
in Bildverarbeitung für die Medizin, Springer, Berlin, Heidelberg, 2005, pp. 350–354.

[20] M. Harris, Optimizing Parallel Reduction in CUDA, NVIDIA Developer Technology, 2007.
[21] S. Heldmann, Non-linear Registration Based on Mutual Information: Theory, Numerics, and

Application, Logos-Verlag, Berlin, 2006.
[22] S. Hermann, Evaluation of scan-line optimization for 3D medical image registration, in Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014,
pp. 3073–3080.

[23] S. Kabus, J. von Berg, T. Yamamoto, R. Opfer, and P. J. Keall, Lung ventilation esti-
mation based on 4D-CT imaging, in First International Workshop on Pulmonary Image

https://doi.org/10.1137/110835955
https://doi.org/10.1137/110835955
https://www.dir-lab.com/Results.html
https://doi.org/10.1137/060662605
https://doi.org/10.1137/060662605
https://doi.org/10.1137/070687724
https://doi.org/10.1137/070687724

MATRIX-FREE DEFORMABLE IMAGE REGISTRATION B887

Analysis, 2008, pp. 73–81.
[24] A. Köhn, J. Drexl, F. Ritter, M. König, and H.-O. Peitgen, GPU accelerated image

registration in two and three dimensions, in Bildverarbeitung für die Medizin, Springer,
Berlin, Heidelberg, 2006, pp. 261–265.

[25] L. König, A. Derksen, M. Hallmann, and N. Papenberg, Parallel and memory efficient
multimodal image registration for radiotherapy using normalized gradient fields, in Pro-
ceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to
Macro, 2015, pp. 734–738.

[26] L. König, A. Derksen, N. Papenberg, and B. Haas, Deformable image registration for
adaptive radiotherapy with guaranteed local rigidity constraints, Radiat. Oncol., 11 (2016),
122.

[27] L. König, T. Kipshagen, and J. Rühaak, A non-linear image registration scheme for real-
time liver ultrasound tracking using normalized gradient fields, in Proceedings of the MIC-
CAI CLUST14 Workshop, Boston, MA, 2014, pp. 29–36.

[28] L. König and J. Rühaak, A fast and accurate parallel algorithm for non-linear image registra-
tion using normalized gradient fields, in Proceedings of the IEEE International Symposium
on Biomedical Imaging: From Nano to Macro, 2014, pp. 580–583.

[29] B. Lassen, J.-M. Kuhnigk, M. Schmidt, S. Krass, and H.-O. Peitgen, Lung and lung
lobe segmentation methods at Fraunhofer MEVIS, in Fourth International Workshop on
Pulmonary Image Analysis, 2011, pp. 185–200.

[30] J. Le Moigne, N. S. Netanyahu, and R. D. Eastman, Image Registration for Remote Sensing,
Cambridge University Press, Cambridge, UK, 2011.

[31] J. Lotz, J. Olesch, B. Muller, T. Polzin, P. Galuschka, J. M. Lotz, S. Heldmann,
H. Laue, M. Gonzalez-Vallinas, A. Warth, et al., Patch-based nonlinear image regis-
tration for gigapixel whole slide images, IEEE Trans. Biomed. Eng, 63 (2016), pp. 1812–
1819.

[32] A. Mang and G. Biros, A semi-Lagrangian two-level preconditioned Newton–Krylov solver for
constrained diffeomorphic image registration, SIAM J. Sci. Comput., 39 (2017), pp. B1064–
B1101, https://doi.org/10.1137/16M1070475.

[33] A. Mang, A. Gholami, and G. Biros, Distributed-memory large deformation diffeomorphic
3D image registration, in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2016, pp. 842–853.

[34] M. Meike, GPU-basierte nichtlineare Bildregistrierung, Master’s thesis, University of Lübeck,
Lübeck, Germany, 2016.

[35] J. Modersitzki, Numerical Methods for Image Registration, Oxford University Press, Oxford,
UK, 2004.

[36] J. Modersitzki, FAIR: Flexible Algorithms for Image Registration, Fundam. Algorithms 6,
SIAM, Philadelphia, 2009, https://doi.org/10.1137/1.9780898718843.

[37] K. Murphy, B. Van Ginneken, J. M. Reinhardt, S. Kabus, K. Ding, X. Deng, K. Cao,
K. Du, G. E. Christensen, V. Garcia, et al., Evaluation of registration methods on
thoracic CT: The EMPIRE10 challenge, IEEE Trans. Med. Imag., 30 (2011), pp. 1901–
1920.

[38] P. Muyan-Ozcelik, J. D. Owens, J. Xia, and S. S. Samant, Fast deformable registration on
the GPU: A CUDA implementation of demons, in Proceedings of the IEEE International
Conference on Computational Sciences and Its Applications (ICCSA), 2008, pp. 223–233.

[39] J. Nocedal and S. Wright, Numerical Optimization, Springer, New York, 1999.
[40] NVIDIA Corporation, CUDA C Programming Guide, no. PG-02829-001 v8.0, 2017, http:

//docs.nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf.
[41] T. Polzin, M. Niethammer, M. P. Heinrich, H. Handels, and J. Modersitzki, Memory

efficient LDDMM for lung CT, in Proceedings of the 19th International Conference on
Medical Image Computing and Computer-Assisted Intervention (MICCAI 2016), 2016,
pp. 28–36.

[42] T. Polzin, J. Rühaak, R. Werner, J. Strehlow, S. Heldmann, H. Handels, and J. Mod-
ersitzki, Combining automatic landmark detection and variational methods for lung CT
registration, in Fifth International Workshop on Pulmonary Image Analysis, 2013, pp. 85–
96.

[43] J. Rühaak, S. Heldmann, T. Kipshagen, and B. Fischer, Highly accurate fast lung CT
registration, in SPIE Medical Imaging, Image Processing, SPIE 86690, International Society
for Optics and Photonics, Bellingham, WA, 2013.

[44] J. Rühaak, L. König, F. Tramnitzke, H. Köstler, and J. Modersitzki, A matrix-free
approach to efficient affine-linear image registration on CPU and GPU, J. Real-Time
Image Process., 13 (2017), pp. 205–225.

https://doi.org/10.1137/16M1070475
https://doi.org/10.1137/1.9780898718843
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

B888 L. KÖNIG, J. RÜHAAK, A. DERKSEN, AND J. LELLMANN

[45] J. Shackleford, N. Kandasamy, and G. Sharp, High Performance Deformable Image Reg-
istration Algorithms for Manycore Processors, Morgan Kaufmann, Waltham, MA, 2013.

[46] D. P. Shamonin, E. E. Bron, B. P. Lelieveldt, M. Smits, S. Klein, and M. Staring, Fast
parallel image registration on CPU and GPU for diagnostic classification of Alzheimer’s
disease, Front. Neuroinform., 7 (2013), pp. 1–15.

[47] R. Shams, P. Sadeghi, R. Kennedy, and R. Hartley, A survey of medical image registration
on multicore and the GPU, IEEE Signal Process. Mag., 27 (2010), pp. 50–60.

[48] M. Stürmer, H. Köstler, and U. Rüde, A fast full multigrid solver for applications in image
processing, Numer. Linear Algebra Appl., 15 (2008), pp. 187–200.

[49] K. Stützer, R. Haase, F. Lohaus, S. Barczyk, F. Exner, S. Löck, J. Rühaak, et al.,
Evaluation of a deformable registration algorithm for subsequent lung computed tomogra-
phy imaging during radiochemotherapy, Med. Phys., 43 (2016), pp. 5028–5039.

[50] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, Diffeomorphic demons: Effi-
cient non-parametric image registration, NeuroImage, 45 (2009), pp. S61–S72.

[51] P. Viola and W. Wells III, Alignment by maximization of mutual information, Int. J. Com-
put. Vis., 24 (1997), pp. 137–154.

[52] V. Vishnevskiy, T. Gass, G. Szekely, C. Tanner, and O. Goksel, Isotropic total variation
regularization of displacements in parametric image registration, IEEE Trans. Med. Imag.,
36 (2017), pp. 385–395.

	Introduction
	Variational image registration framework
	Continuous model
	Discretization
	Numerical optimization
	Gauss–Newton
	L-BFGS

	Analytical derivatives
	Curvature
	NGF

	Derivative analysis and matrix-free computation schemes
	Derivative computations for NGF
	Gradient
	Hessian-vector multiplication

	Derivative computations for curvature regularization
	Grid conversion
	Extension to related models

	Algorithm analysis
	Matrix element computations and memory stores
	Matrix-based approach
	Matrix-free approach

	Memory requirements

	Experiments and results
	Scalability
	Runtime comparison
	Derivative and Hessian evaluation
	Full registration

	GPU implementation
	Implementation details
	Evaluation

	Medical applications
	Pulmonary image registration
	Oncological followup

	Summary and conclusions
	References

