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Abstract. While total variation is among the most popular regularizers for vari-
ational problems, its extension to functions with values in a manifold is an open
problem. In this paper, we propose the first algorithm to solve such problems
which applies to arbitrary Riemannian manifolds. The key idea is to reformu-
late the variational problem as a multilabel optimization problem with an infinite
number of labels. This leads to a hard optimization problem which can be ap-
proximately solved using convex relaxation techniques. The framework can be
easily adapted to different manifolds including spheres and three-dimensional
rotations, and allows to obtain accurate solutions even with a relatively coarse
discretization. With numerous examples we demonstrate that the proposed frame-
work can be applied to variational models that incorporate chromaticity values,
normal fields, or camera trajectories.

1 Introduction

1.1 Total Variation for Manifold-Valued Functions

For functionsu : Ω → Rl, Ω ⊆ Rm, the total variation

TV (u) = sup
p∈C∞

c (Ω,Rm),‖p‖∞61

∫

Ω

u Div p dx, (1)

plays a central role in variational image processing because of its numerous favorable
properties: itpreserves discontinuities, as a sharp transition from0 to 1 has the same
cost as a smooth monotone transition. It is alsoconvexand thus amenable to efficient
and globally optimal solutions. Moreover, applied to the indicator function of a set it
gives the perimeter of that set, which makes it well suited forgeometricoptimization
problems.

In many applications of computer vision, however, the functions of interest take on
values which do not lie in a Euclidean space such asRl, but rather on amanifold– see
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Fig. 1. Denoising of a function with values in a manifold.We propose an algorithm for total
variation (TV)-regularization of functions with values on arbitrary Riemannian manifolds. This
example shows the TV-denoising(blue) of a one-dimensional function(red) u : [0, 1] → M
with values in the Moebius bandM. Characteristic of TV-denoising is the reduction of contrast,
which corresponds to the shrinking of the curve. The key idea is to represent the manifold by
a set of grid points (labels) and to solve a convex optimization problem that admitssub-label
accuracy: in the above example, the blue points may lie between grid-points.

Figure1. Smoothing a camera trajectory, for example, requires to define regularizers
for functionsu : Ω → SE(3) with values in the special Euclidean groupSE(3). Pro-
cessing the normal field of a geometric structure, such as a surface or three-dimensional
shape, leads to variational problems in terms of functions that assume values on the
two-dimensional sphereS2.

Such problems with constraints on therangeare considerably harder than problems
in which the the function’sdomainΩ is a manifold. While the latter can usually be dealt
with by a suitable modification of the differential operators, constraining the range of
u to a manifold is generally a non-convex constraint, which makes optimization much
harder.

Another major challenge in extending the concept of total variation to such manifold-
valued data is that we need to assure algorithmically that discontinuities in the values
are properly handled. In particular, jumps in the values should be measured with respect
to thegeodesicdistance on that manifold. For general manifolds the estimation of the
geodesic distance itself may also be a challenging computational problem.

1.2 Related Work

Giaquinta and Mucci [7,8] studied the notion of total variation for functionsu : Ω →
M with values in general manifoldsM. They defined it as3

TVM(u) =
∫

Ω\Su

|∇u| dx +
∫

Su

dM(u−, u+) dHm−1. (2)

3 For simplicity, we assume that the Cantor part and vanishes constrain our analysis to thespecial
functions of bounded variationSBV(Ω;M).
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It provides a separation of the differentiable part and the jump part where the jump
set Su is penalized with thegeodesic distancedM(u−, u+) between the two values
u− andu+ on either side of the jump. Giaquinta and Mucci theoretically study the
functions with bounded total variation and proved several properties such as lower-
semicontinuity and structure theorems. Unfortunately, they fail to provide an algorithm
for implementing this regularizer in a variational setting.

In fact, their theoretical analysis is based on an embedding of the given manifold
M in a higher-dimensional Euclidean space which is infeasible to implement: Firstly,
the higher-dimensional embedding space increases the computational complexity. Sec-
ondly, one cannot numerically constrain the values of the estimated solution to the gen-
erally non-convex manifoldM.

For the special case of the circleM = S1, Giaquinta et al. [6] prove the existence
of minimizers for certain energies in the space of functions with boundedtotal cyclic
variation, again using an embedding in the Euclidean plane. For the caseM = S1,
Cremers and Strekalovskiy [4] recently proposed an implementation of various models
for cyclic data, including total variation, quadratic, Huber-TV and Mumford-Shah reg-
ularization. To this end, they unwrapped the values ofu to the real axisR and proposed
an efficient algorithmic solution to account for the periodicity of the values.

Unfortunately, this solution does not extend to general Riemannian manifolds, as
unwrapping the manifold to a simple Euclidean one is typically not feasible. Moreover
their representation is based on identifyingu with thesub-level set{(x, t)|u(x) > t},
which is not available for higher-dimensional manifolds.

Inspired by Ishikawa’s graph-theoretic solution to spatially discrete multi-label op-
timization [11], Chambolle et al. [2], Zach et al. [18] and Lellmann and Schnoerr [14]
proposed relaxations of the labeling problem on continuous domains that allow to find
good – and often globally optimal – solutions using convex optimization. While these
approaches do consider a continuous domain, the set of feasible labels remains a finite
discrete set.

To address this problem and devise an algorithm which admits an infinite number
of labels representing a manifold, we build on the formulation proposed in [14]: for a
finite label setJ = {1, . . . , l}, a metricd : J 2 → R, and unary costss : Ω → Rl, they
solve

min
u′:Ω→Δl

sup
p:Ω→Rd×l

∫

Ω

〈u′, s〉dx + λ

∫

Ω

〈u′, Div p〉dx, (3)

s.t.‖pi1(x)− pi2(x)‖2 6 d(i1, i2) ∀i1, i2 ∈ J , ∀x ∈ Ω. (4)

whereΔl is thel-dimensional unit simplex. This constitutes aconvex relaxationof the
finite labeling problem similar to Linear Programming (LP) relaxation [16,17]: each of
the values inJ is associated with one of the unit vectorse1, . . . , el ∈ Rl, but interme-
diate values are allowed in order to obtain a convex problem. The regularizerJ can be
seen as total variation for functions with values in the finite setJ , where the metricd
controls the weighting of a jump from labeli1 to labeli2.

A straightforward approach to apply this idea to manifolds is to choose a finite set
of pointsz1, . . . , zl ∈M and to setd(i, j) = dM(zi, zj). In fact, with these definitions
J implementsTVM if one restrictsu to the values{z1, . . . , zl} in (2).
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This approach has two major drawbacks: Firstly, it generally requires a quadratic
number of constraints, which severely restricts the resolution with which the manifold
can be discretized. Secondly, it is in fact designed so that minimizersu′ are likely to
only assume values in{e1, . . . , el}, effectively limiting the range ofu to {z1, . . . , zl}.

While for finite labeling problems this is desirable, it sets a hard limit for the accu-
racy that can be expected when applying it to manifolds. This issue is inherent of the
approach (3)–(4), as the latter provides no means to incorporate knowledge about the
local structure of the manifold.

1.3 Contribution

In this paper, we present a framework and algorithmic solution for regularization of
signals with values in an arbitrary Riemannian manifold. The key idea is to consider
the problem as a multi-labeling problem as in (3), but to extend this approach to an
infinitenumber of labels.

This allows to derive an improved formulation of the dual constraints (4) that specif-
ically respects the local manifold structure, and at the same time requires only a linear
number of constraints.

Together, these features ensure that the minimization problem is computationally
feasible, and allow to obtain accurate solutions with values on the manifold that are not
restricted to a finite set.

We validate our method on a variety of inverse problems, including the denoising
of chromaticity values, the inpainting and denoising of normal fields and the denoising
of camera trajectories.

2 Proposed Model

In order to extend (3) to the case whereJ consists of all points on a (connected, Rie-
mannian) manifoldM, we replace the unit simplex formulationu′ : Ω → Δl by
u′ : Ω → P(M), whereP(M) denotes the set ofprobability measuresonM. The
distanced is naturally given by the geodesic distancedM :M2 → R onM.

The setJ = M then consists of aninfinite number of points. We propose to use
the following formulation:

min
u′:Ω→P(M)

sup
p:Ω×M→Rm

∫

Ω

〈u′, s〉dx + λ

∫

Ω

〈u′ Div p〉dx (5)

s.t.‖p(x, z1)− p(x, z2)‖2 6 dM(z1, z2), ∀z1, z2 ∈M. (6)

The usefulness of this formulation is still slightly limited, as solving the problem nu-
merically requires to discretize the problem, i.e., choosing a finite set of labelsJ , in
which case (5) reduces to the finite labeling problem (3).

However, the Riemannian manifold structure allows to reformulate the dual con-
straints (6) in a more elaborate way. In particular, it allows to compute, for every point
x ∈ Ω and every pointz ∈M the gradientDzp(x, ∙) = (Dzp

1(x, ∙), . . . , Dzp
m(x, ∙)) ∈

(TzM)m, whereTzM is the tangent space toM at the pointz.
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Fig. 2. Rudin-Osher-Fatemi (ROF) denoising (blue) of a vector-valued signalu : [0, 1] →
R2 (red), visualized as a curve inR2. Left to right: pairwise approach (6) restricted to 4-
neighborhood; 8-neighborhood; full model (6) with quadratic number of pairwise terms; pro-
posed gradient-based method (7). The grey points show the quantization of the range ofu, i.e.,
[−1, 1]2. Apart from adirectional biascaused by restricting the number of pairwise interaction
terms to a local neighborhood(left, second from left), the pairwise formulation exhibits a strong
bias towardsgrid points(second from right). The proposed method has greatly reduced bias and
allows the minimizer to assume valuesbetweengrid points, which can be considered as a form
of sub-label accuracyin the range ofu (right) . The slight shrinkage again amounts to the typical
contrast loss associated with ROF models.

The key idea is to replace thepairwiseconstraints (6) by a local condition on the
gradientin terms of the spectral norm‖ ∙ ‖σ, ‖M‖σ := sup{‖Mv‖2/‖v‖2|v ∈ TzM}:

‖Dzp(x, ∙) ‖σ 6 1, ∀z ∈M, ∀x ∈ Ω. (7)

This amounts to replacing a Lipschitz condition with respect to the geodesic distance
dM by an equivalent constraint on the gradient. We provide a short proof of the equiva-
lency in the appendix, as it is instructive to verify that in fact the spectral norm appears
in the constraint, rather than a numerically more convenient – and more commonly used
– matrix norm such as the Frobenius norm.

The gradient-based formulation (7) has two major benefits:

– It can be accurately discretized usingO(l) local terms in contrast toO(l2) terms
required for the full pairwise formulation (6).

– It allows to incorporate knowledge about thelocal manifold structurein terms of
the differential operatorDz.

While it is possible to reduce the computational cost for the pairwise constraints by
restricting the interaction to local neighborhoods, the approximation of the geodesic
distancedM is more accurate when using the local terms obtained through the gradient-
based formulation.

The effect can be seen in Fig.2, where we compare the result of Rudin-Osher-
Fatemi (ROF) denoising of a functionu : [0, 1] → [−1, 1]2 using a discretization
of the set[−1, 1]2 with l = 289 equally spaces points and gradients evaluated at the
center of each cell. For such a moderate number of points the full pairwise model (6)
already requires83521 constraints at each image point, and shows a pronounced bias
towards grid points. The proposed model has much less bias, while only requiring289
constraints.
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An interesting observation is that forM = Rn our approach leads to a regularizer
based on the nuclear norm, as the dual to‖ ∙ ‖σ. Such norms have been considered in a
slightly different context in [15] and more recently in [9].

3 Discretized Model and Optimization

In the following we outline a discretization for the problem (5), (7) that captures these
favorable properties. We assume that the manifoldM is discretized usingl ∈ N points
z1, . . . , zl ∈ M. The weights vectorb ∈ Rl defines the integration over the manifold,
i.e., if p ∈ Rl discretizes a functionp′ on the manifold viapi = p′(zi) then〈b, p〉 :=
∑l

i=1 bipi ≈
∫
M p(x)ds(x).

The image domainΩ ⊆ Rm is discretized usingn ∈ N pointsx1, . . . , xn ∈ Ω.
The functionu′ : Ω → P(M) is represented as a vectoru ∈ (PM)n with ui = u′(xi),
wherePM is the discretized space of probability measures on the manifoldM:

PM := {y ∈ Rl|y > 0, 〈y, b〉 = 1}. (8)

The local costs〈u′, s〉 are represented as the weighted inner product〈u, s〉b with the
cost vectors ∈ Rn×l, where

〈u, s〉b :=
n∑

i=1

〈ui ∙ si, bi〉. (9)

The linear differential operatorD : Rn×l → Rn×m×l computes the gradients inΩ
using a staggered-grid scheme, and can be implemented as a sparse matrix.

For computation of the gradients on thes-dimensional manifoldM we allow to
specifyk ∈ N evaluation pointsy1, . . . , yk ∈ M at which the gradient constraint (7)
should be enforced; these could for example be the cell centers ifM = Rd and thexj

form a regular mesh. For every such pointyi, a neighborhoodNi ⊆ {1, . . . , l} of r ∈ N
points, i.e.,#N = r, is given, whose values will be used to compute the gradient atyi.

3.1 Gradient Discretization on the Manifold

In every pointyi we compute, for all pointszj , j ∈ Ni in the neighborhood, the in-
verse exponential mapvi,j := exp−1

yi (zj) ∈ TyiM. We see that using this definition,

p(x, yi) + 〈vi,j , Dyip(x, ∙)〉 provides an estimate ofp(x, zj) through the Taylor expan-
sion.

In order to approximate the gradientgi := Dyip(x, ∙) at an evaluation pointyi in
a generic fashion, we define it as the vector in the tangent space that best explains the
values ofp through these estimates in an`2-sense:

gi := arg min
g∈TyiM

min
c∈R

∑

j∈Ni

(c + 〈vi,j , g〉 − p(x, zj))2. (10)

The extra variablec in the minimization receives the estimate for the valuep(x, yi),
which is unknown asp is discretized only on the pointszi.
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By choosing a suitable parametrization of the tangent space at each pointyi, prob-
lem (10) can be written in terms of matricesM i ∈ Rr×s (wheres is the dimen-
sion of the manifold and therefore of the tangent space) and a sparse indexing matrix
P i ∈ Rr×l as

min
g∈Rs,c∈R

‖ce + M ig − P ip‖22, (11)

wheree = (1, . . . , 1) ∈ Rr is the constant1-vector. The optimality condition of this
joint minimization problem is

(
M i>

e>

)
(
M i e

)
(

g
c

)

=

(
M i>

e>

)

P ip. (12)

Solving the system explicitly forc and substituting the result back into (12), we obtain
the optimality condition forg,

M i>EM ig = M i>EP ip, E := (I − r−1ee>). (13)

We can therefore represent everything required to compute the gradient according to
(10) in the compact form

Aigi = BiP ip, (14)

with the two matricesAi := M i>EM i ∈ Rs×s andBi := M i>E ∈ Rs×r, together
with the neighborhood-defining sparse matricesP i.

3.2 Discretized Model

With the above remarks, and identifying matrices with their vector representation where
necessary, the fully assembled discretized problem takes the following form:

min
u∈Rn×l

max
p∈Rn×l×m,g∈Rn×r×s×m

〈u, s〉b + 〈Du, p〉b (15)

s.t.ui > 0, 〈ui, b〉 = 1, i = 1, . . . , n, (16)

Aigi
t = BiP ipt, i = 1, . . . , n, t = 1, . . . ,m, (17)

‖gi,j‖σ 6 λ, i = 1, . . . , n, j = 1, . . . , r. (18)

The scaling byb can be removed by settingb = e, in which case the problem remains
the same except for an element-wise scaling ofui by bi, and the constraints foru turn
into the unit simplex constraintsui ∈ Δl. Note that each of thegi,j is a matrix inRs×m,
wheres is the dimension of the manifold andm is the dimensions of the image domain
Ω.

To solve the problem numerically, we introduce suitably-sized multipliersw andq
for the equality constraints, and obtain

min
u,w

max
p,g,q
〈u, s〉+ 〈Du, p〉+

∑

i,t

〈wi,t, Aigi
t −BiP ipt〉+

∑

i

〈qi, b
>u− 1〉 (19)

s.t.ui > 0, ‖gi,j‖σ 6 λ. (20)
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The problem can then be solved using a standard primal-dual approach such as [3]. In
order to deal with the non-trivial spectral norm constraints we use an approach based
on [9], which allows to explicitly compute projections on the constraint set for image
domainsΩ with dimension1 and2. Another possible way is to replace the spectral
norm by the Frobenius norm, in which case (19)–(20) becomes a standard second-order
cone program (SOCP).

Let us summarize why in our opinion the proposed scheme is well suited as a
generic model for optimization problems with values on manifolds:

– The solver implementation is fully independent of the actual structure of the mani-
fold. Implementing a new manifold only requires to supply a set of pointszi on the
manifold, the weight vectorb that defines the integration, and the matricesAi and
Bi that define the local manifold structure.

– All constraint sets have a simple separable structure and can be easily projected
upon. This makes the use of iterative, inexact projections obsolete when using first-
order solvers such as [3], and eliminates related convergence and infeasibility is-
sues.

– By choosing theyi on the midpoints between pairs of points in the mesh defined by
thezj and choosing suitableAi, Bi, andP i, the discretized model also covers the
pairwiseformulation (6), as well as variants with a reduced number of interaction
terms.

The latter point allows to easily compare the performance to that of the pairwise formu-
lation. In our opinion, the most prominent feature is the modularity: in fact, all examples
in the experimental section were computed using the same, unmodified solver imple-
mentation.

3.3 Means on Manifolds

As (5) is essentially a convex relaxation approach, it is possible – and actually desirable
– to obtain probability measuresui with several non-zero components. This raises the
question of how to map such probability measures into single points onM.

To simplify notation we denoteu = u(x) for a fixed pointx ∈ Ω, and restrict
ourselves to the caseb = (1, . . . , 1). Consequentlyu is constrained to the unit simplex,
u ∈ Δl.

The classical way to interpret non-binaryu is to associate it with the corresponding
convex combinationz′ of thezj , i.e.,

z′ =
l∑

j=1

ujz
j . (21)

This approach fails for manifolds other than convex subsets ofRm with the usual Eu-
clidean distance, as otherwisez may not be a point inM. Therefore we replace (21) by
its Fréchet mean(also known asKarcher mean) with respect to the geodesic distance,

z′ = arg min
z′∈M

l∑

j=1

ujdM(z′, zj)2. (22)
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ForM = Rm anddM(z′, z) = ‖z − z′‖2, this coincides with (21). Note that there
may be cases when (22) does not have a unique minimizer, such as whenM = S1 and
u assumes the value1/2 on two opposing points on the circle. While such border cases
can be exercised by constructing symmetric noise-free academic problems, we found
that in all our experiments on real-world data such a case never occurred.

As (22) cannot directly be solved as a convex problem, we use an iterative method
[13]. Starting from an initial estimatez for z′, all pointszj are mapped to the tangential
spaceTzM through the inverse exponential map:

z′j ← exp−1
z (zj) ∈ TzM. (23)

The mean is then computed in thetangent space,

z̄′ ←
l∑

j=1

u′
jz

′j ∈ TzM. (24)

Finally z̄′ is projected back onto the manifold to updatez,

z ← expM(z̄′), (25)

and the process (23)–(25) is repeated until convergence inz.
We observed that this process is generally very fast. On the unit sphereS2 it con-

sistently required5 − 10 iterations to converge to almost machine precision, and200
iterations were sufficient to obtain reliable results even in cases whereu′ has a large
number of non-zero components. As the Fréchet mean only needs to be computed once
after the solver has finished, efficiency is also non-critical.

4 Experimental Results

4.1 Chromaticity-Brightness Denoising

Kang and March, and Bao et al. [12,1] suggested a denoising model for RGB-valued
color imagesI : Ω → R3 that separates denoising of the brightness|I| : Ω → R
from denoising of the chromaticityC = I/|I| : Ω → S2. The former encodes mainly
geometric information, while the latter consists of vectors in the two-dimensional unit
sphere and captures the color information.

This separation of geometry and color was found to be better suited for preserving
details than simply treatingI as anR3 vector. While [12,1] replace the constraintC ∈
S2 by a penalizing term(1 − |C|)2 in the energy, our framework allows to naturally
include it into the optimization (Fig.3). Smoothing the brightness and chromaticity
components differently gives rise to interesting visual effects (Fig.4).

4.2 Optical Flow

Another application of our framework is the computation of dense optical flowu :
Ω → R2 between two imagesI1, I2 : Ω → R3, where one seeks to minimize|I1(x)−
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Fig. 3. Denoising of a color imageI : Ω → R3 by separately denoising its intensity|I| ∈ R by
the usual ROF model, and chromaticityI/|I| ∈ S2 by the ROF model for values onS2 using the
proposed method.Left to right, top to bottom: input image; added noise; denoised chromaticity;
combined denoising result.

Fig. 4. Artistic effects using separate smoothing of brightness and chromaticity.Left to right:
smoothed chromaticity; smoothed brightness and chromaticity; smoothed brightness.
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Fig. 5. Optimization on the two-dimensional unit sphere applied to denoising of normals inS2

for three-dimensional visualization.Left to right: Input normal field (two-dimensional top-
projection) computed from noisy height map; result of Rudin-Osher-Fatemi denoising inS2;
height map with shading computed from unprocessed noisy normal field; height map with shad-
ing computed from denoised normal field. Similar to the scalar-valued case, the ROF model
minimizer preserves discontinuities, e.g., along the ridges of the mountains.

I2(x + u(x))| while keeping the velocity mapu regular. Although the range ofu is
discretized using a regular grid, the sub-label accuracy of our approach allowsu to
assume values between grid points, giving a more natural, smooth result compared to
treating the problem as a labeling problem (Fig.6).

4.3 Processing Normals Fields for Visualization

Normal fields often occur in computer graphics and computer vision as direction fields
or surface normals. Variational processing of such data requires optimization over the
two-dimensional unit sphereS2.

Figure5 shows an application of our method to ROF denoising of the normal field
for terrain data obtained from [5] in order to compute a shaded model. Denoising the
normal field considerably improves the visual quality, preserving sharp transitions in
the normal field such as along the mountain ridges due to the total variation-based
regularizer. The sphere was discretized usingl = 162 points obtained by subdividing
the edges of an icosahedron twice, and the gradients evaluated at the centers of all
(triangular) faces.

The same approach can be used to inpaint normal fields based on given contour
lines with outer normals by setting the data term to zero outside of the contours. By
applying a shading model, pseudo three-dimensional views can be synthesized from a
sketched two-dimensional contour (Fig.7, we also refer to [10]).

4.4 Denoising of Rotation Data

Variational processing of rotation data is a highly non-trivial task, as the rotation space
SO(3) is difficult to parametrize in a way that is amenable to optimization. The pro-
posed approach can be applied to this setting by representing the rotations as unit quater-
nions. These can be viewed as points on the three-dimensional unit sphereS3, provided
that antipodal points are identified.
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Fig. 6. Optical flow computation. The optical flow vectors are represented as velocity vectors in
R2 (cf. Fig. 2) Top: input image pair.Bottom: color-coded velocity vector map. Solving the
problem as a labeling problem on a finite grid leads to an artificial piecewise constant solution
(bottom left). Our sub-label accurate model generates a smoother, more realistic velocity map,
as the vectors are not constrained to the grid(bottom right) .

Fig. 7. Optimization with values in the unit sphereS2 applied to the estimation of a surface
normal field based on a sketched contour line.Left to right: Input contours with outer normal
field; normal field estimated using a total variation regularizer with values on the unit sphere (x-
andy-components of the normals color-coded as hue); shaded object based on the reconstructed
normals.
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Fig. 8. Discretization of the set of unit quaternions using720 points as used in Fig.9. Each
quaternion is visualized as the rotated triangle that is obtained when applying the quaternion
rotation to a fixed template triangle.

Fig. 9. Optimization over the spaceSO(3) of three-dimensional rotations applied to denoising
of camera orientations.Top: input orientations.Bottom: denoised orientations. The rotations are
discretized using a quaternion representation, and optimization is subsequently carried out over
the three-dimensional manifold of unit quaternions.

We generate the pointszi from the vertices of the hexacosichoron, which is a regular
polytope inR4 akin to the icosahedron inR3, by subdividing the faces and eliminating
opposite points. The gradients are evaluated on the barycenters of the faces. This yields
a set of720 regularly spaced quaternions representing rotations inSO(3) (Fig. 8).

Using the same numerical solver as for the previous experiments, this allows to
smooth the rotation component of a camera trajectory (Fig.9).

5 Conclusion

We proposed a framework for TV-regularization of functions with values in an arbitrary
Riemannian manifold. To this end, we formulated the TV-regularization as a multi-
label optimization problem with an infinite number of labels, and used a specialized
discretization that allows to better incorporate knowledge about the manifold structure.
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Using this approach, it becomes possible to solve variational problems for manifold-
valued functions that consist of a possibly non-convex data term and a total variation
regularizer. Suitable constraints on the dual variables ensure that the TV-regularizer
correctly penalizes jumps according to the geodesic distance on the manifold.

We experimentally validated the proposed method on a variety of inverse problems,
including the denoising of chromaticity values and camera trajectories, optical flow
computation, as well as inpainting and denoising of normal fields. The proposed ap-
proach allows to obtain more accurate solutions compared to treating the problem as a
finite labeling problem, at the same time reducing the computational effort.

Many properties of minimizers of total variation-regularized models in manifolds
are still not fully understood. The present work allows to gain numerical insight into
this question, and will hopefully lead to a better theoretical understanding of their be-
havior. A generalization to other regularizers such as quadratic, truncated-quadratic,
and Huber-TV, remains a subject of future work.
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Appendix

Proof (equivalency of(6) and (7)): Denotep = p(x, ∙) and assume that the gradient
constraint (7) holds. For any two pointsz1, z2 ∈ M and anyC1 curvec : [a, b] →M
connecting the points, we havec(a) = z1 andc(b) = z2. Then

p(c(b))− p(c(a)) =
∫ b

a

(p ◦ c)′(s)ds (26)

=
∫ b

a

Dc(s)p ∙ c
′(s)ds (27)

by the definition of the gradientDc(s)p, and consequently

‖p(c(b))− p(c(a))‖2 6
∫ b

a

‖Dc(s)p ∙ c
′(s)‖2ds. (28)

As the gradient constraint (7) holds by assumption andc′(s) ∈ Tc(s)M, we can further
bound

‖p(c(b))− p(c(a))‖2 6
∫ b

a

‖c′(s)‖2ds. (29)

This estimate clearly requires to use the spectral norm in (7) in order to not introduce
any unnecessary constants. The right-hand side is the lengthL(c) of c, and we obtain

‖p(z1)− p(z2)‖2 6 L(c) (30)
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for all curves connectingz1 andz2, which implies (6).
On the other hand, assume that (6) holds. For any pointz ∈ M and tangent vector

v ∈ TzM we can find aC1 curvec : [−ε, ε]→M with c(0) = z andc′(0) = v. Then

‖Dz(s)p ∙ v‖2 = ‖Dz(s)p ∙ c
′(0)‖2 = ‖(p ◦ c)′(0)‖2

= ‖ lim
δ→0

(p(c(δ))− p(c(0)))/δ‖2 (31)

= lim
δ→0
‖p(c(δ))− p(c(0))‖2/δ (32)

Using the assumption (6), we obtain

‖Dz(s)p ∙ v‖2 6 lim inf
δ→0

‖dM(c(0), c(δ))‖2/δ (33)

= lim inf
δ→0

‖
∫ δ

0

c′(s) ds‖2/δ (34)

= ‖c′(0)‖2 = ‖v‖2, (35)

where we use the continuity ofc′. This shows that‖Dz(s)p ∙ v‖2/‖v‖2 6 1 for all v in
TzM, which implies (7).
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