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Abstract. Recently, variational relaxation techniques for approximat-
ing solutions of partitioning problems on continuous image domains have
received considerable attention, since they introduce significantly less
artifacts than established graph cut-based techniques. This work is con-
cerned with the sources of such artifacts. We discuss the importance
of differentiating between artifacts caused by discretization and those
caused by relaxation and provide supporting numerical examples. More-
over, we consider in depth the consequences of a recent theoretical result
concerning the optimality of solutions obtained using a particular relax-
ation method. Since the employed regularizer is quite tight, the consid-
ered relaxation generally involves a large computational cost. We propose
a method to significantly reduce these costs in a fully automatic way for
a large class of metrics including tree metrics, thus generalizing a method
recently proposed by Strekalovskiy and Cremers [63].

1 Introduction and Overview

The issue of how to formulate, solve, and approximate labeling problems has a
long-standing history as one of the classical problems in image processing, and
occurs in many applications, such as segmentation, multi-view reconstruction,
stitching, and inpainting [56]. In the past decade, and in particular with the in-
troduction of maximum flow-based methods into image analysis, a very popular
approach has been to first cast the problem into the form of a Markov Random
Field with a finite number of states, i.e., to minimize an energy function depend-
ing on a finite number of labels associated with a finite number of points in the
image domain.

By doing so, one obtains a finite-dimensional problem defined over a discrete
set of possible configurations. Therefore the resulting problem can be treated
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and analyzed as a combinatorial problem, for which a large machinery of solvers
is available, most notably graph cut-based algorithms such as α-expansion.

As an alternative, in the past few years it has become more and more common
to postpone the discretization until the very end, and instead to work in the
function space setting as long as possible.

In particular, we will consider the following formulation, which can be seen
as a continuous analogue of the finite-dimensional pairwise MRF energy. A pre-
decessor can be found in [51], while the model was proposed independently in
[66, 45, 57].

The task is to assign to each point x in the image domain Ω ⊆ Rd an integral
label `(x) ∈ I := {1, . . . , l}, so that the label assignment (or labeling) function `
minimizes the functional

inf
`:Ω→I

f(`), f(`) :=
∫

Ω

s(x, `(x))dx + J(`) , (1)

where the left “data” term is strongly application-driven and defines local in-
formation obtained from the input image, and the right “regularization” term
penalizes labeling functions ` according to some nonlocal irregularity measure,
i.e., prior information.

Instead of considering (1) directly, one then embeds the labels into Rl in the
following way: Identify label i from the label set I := {1, . . . , l} with the i-th
unit vector ei ∈ Rl, set E := {e1, . . . , el}, and solve

inf
u∈CE

f(u), f(u) :=
∫

Ω

〈u(x), s(x)〉dx +
∫

Ω

Ψ(Du) , (2)

CE := BV(Ω, E) = {u ∈ BV(Ω)l|u(x) ∈ E a.e. x ∈ Ω}.

The labels are thus embedded into a higher-dimensional space. The function
space BV(Ω, E) ⊂ (L1)l of functions of bounded variation guarantees a minimal
regularity of the discontinuities of u, we refer to [1] for the mathematical back-
ground. The integrand Ψ is positively homogeneous and convex, and defines the
regularizer.

In this work we will focus on a specific generic regularizer proposed in [57]
and later extended in [48]: For some given metric d : {1, . . . , l}2 → R>0, define

Ψ(z) := Ψd(z) := sup{〈z, v〉|z ∈ Dd
loc} , (3)

Dd
loc :=

⋂

i 6=j

{v =
(
v1, . . . , vl

)
∈ Rd×l| . . . (4)

‖vi − vj‖2 6 d(i, j),
∑

k

vk = 0} . (5)

The idea behind this definition is that at points where u locally jumps from
label ej to label ei along a normal ν, the gradient Du is the (d− 1)-dimensional
Hausdorff measure multiplied by ν(ei−ej)>. The function Ψ is constructed such
that

Ψ(ν(ei − ej)>) = d(i, j), (6)
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i.e., jumps are penalized by their length multiplied by d(i, j). This can be seen
as an infinite-dimensional equivalent of the metric labeling problem [37].

The slightly convoluted look of (3)–(5) originates from the wish that Ψ should
be the largest convex function on Rd×l that satisfies (6), which anticipates that
ultimately we would like to consider a convex relaxation of (2), as will be dis-
cussed below. It is also worth mentioning that the equality constraint in (5) is
not necessary, but does not change the value of Ψ on gradients of u, and ensures
that Dd

loc is bounded.
As a simple example, consider the uniform metric

du(i, j) := 1{i 6=j} (i, j) , (7)

where 1S(x) = 1 if x ∈ S and 0 otherwise denotes the characteristic function of
a set S. Under this metric, the regularizer simply penalizes the total interface
length.

By definition, Ψ is rotationally invariant, i.e. Ψ(Rz) = Ψ(z) for any rotation
matrix R ∈ SO(d). Therefore the regularizer is isotropic and homogeneous, in
the sense that it is invariant under rotation and translation of the coordinates.
By using a different norm in (5) and making Ψ depend on x, anisotropic and
inhomogeneous variants can also be perceived, but will not be discussed here.

The data term is linear in u and is fully described by the vector

s(x) := (s1(x), . . . , sl(x))> (8)

:= (s(x, 1), . . . , s(x, l))> ∈ Rl . (9)

Due to the linear structure, the local costs s may be arbitrarily complicated,
possibly derived from a probabilistic model (Sect. 2.1), without affecting the
overall problem class. We generally assume s > 0, however any problem with
(possibly negative) s bounded from below can be equivalently transformed into
this form by adding a sufficiently large constant to s.

In this form, the label set is then relaxed by allowing u to take intermediate
(fractional) values in the convex hull conv E of the original label set. This is just
the unit simplex Δl,

Δl := conv{e1, . . . , el} = {a ∈ Rl|a > 0,

l∑

i=1

ai = 1} . (10)

The problem is then considered on the relaxed constraint set C,

C := BV(Ω,Δl) (11)

= {u ∈ BV(Ω)l|u(x) ∈ Δl for a.e. x ∈ Ω} , (12)

and one obtains the relaxed problem

inf
u∈C

f(u) , f(u) :=
∫

Ω

〈u(x), s(x)〉dx +
∫

Ω

Ψ(Du) . (13)
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It can be shown that for any metric d, (13) admits a (possibly non-unique)
minimizer. Since this functional is convex, a globally optimal solution can be
found using convex optimization methods.

Ideally, one would hope for integral solutions, i.e., solutions that only assume
values in E . In practice, solving (13) leads to very good solutions of the labeling
problem, with fewer artifacts than in MRF-based methods. Here the construction
of Ψ comes into play: while other choices could be imagined that fulfill (6), the
definitions (3)–(5) lead to the tightest relaxation that can be written in the
integral form (13), which minimizes the amount of unwanted solutions [13, 48].

However, when solving (13) numerically, one still observes fractional solu-
tions, i.e., solutions that assume values in Δl \ E in some points.

In this survey, we focus on the possible sources of such fractional labels. In
part, such labels can be attributed to the relaxation: by enlarging the constraint
set, one introduces artificial solutions. Then, in order to obtain an integral so-
lution that is close to the – unknown – best integral solution, one requires a
rounding scheme. However, this introduces several questions: How should one
round? Should the scheme be formulated on function spaces or on the discretized
problem?

On the other hand, there is an important reason for allowing intermediate
values: Fractional values are actually required in order to provide a good approx-
imation of the true spatially continuous solution.

This aspect is often overlooked in related literature, and it raises the slightly
subtle question of whether computing an integral solution of the discretized prob-
lem is the optimal approach.
Contribution. This manuscript is structured in three parts. First, we provide
a short synopsis of the variational multiclass approach (13) and relate it to ex-
isting continuous (function-space) approaches (Sect. 2). We then review related
discrete (finite-dimensional) methods and possible discretizations, and illustrate
and compare them on several numerical examples (Sect. 3).

We feel that it is important to formulate these methods in a unified framework
in order to point out the close connections. In particular, we hope to make
more obvious the often overlooked necessity of fractional labels, even when the
relaxation is tight.

After discussing the discretization aspect, in the second part (Sect. 4) we
focus on the second source of fractional labels, the relaxation aspect. We provide
an extended review on approaches in the literature and relate them to a recently
proposed rounding approach for recovering integral from fractional solutions. For
illustration we supply several numerical examples.

Finally, we propose a method for reducing the computational effort involved
in solving the relaxed problem (13) by several orders of magnitude for larger
number of labels (Sect. 5).

We close with an extended discussion on the justification of using combina-
torial or relaxed problem formulations (Sect. 6).

For the technical mathematical details and proofs we refer to the thesis [43].
The proofs for the rounding method were announced in conference proceedings
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form in [46] and have been extended to the more general regularizer (5) in [47].
We additionally supply the background and numerical evidence.

The present manuscript should be understood as an extended survey of the
field with a specific focus on the interplay of discretization and relaxation in
connection with discrete and continuous approaches to image partitioning.

Given that vast amount of literature on segmentation models and algorithms
it seems almost impossible to give a complete account, and we make no attempt
at doing so. Instead we deliberately focus on the model (2) and aim to illus-
trate the main connections and conclusions by means of this – necessarily rather
specific – example.

2 Continuous Models

2.1 Variational Models

Problem (13) belongs to the class of variational problems, where the output is
defined as the minimizer of an objective function f ,

u∗ := arg min
u∈C

f(u) , (14)

C is some subset of a space of functions that are defined on the continuous domain
Ω ⊆ Rd, and f is a functional depending on the input data. The objective f is
typically composed of a data term H(u) and a regularizer J(u),

f(u) = H(u|I) + J(u). (15)

The data term depends on the input data I – such as color values of a recorded
image, depth measurements, or other features – and promotes a good fit of the
minimizer to the input data. In order to cope with noise and extract higher-order
information from low-level image features, it is generally necessary to incorporate
additional prior knowledge about the “typical” appearance of the desired output,
which is the purpose of the regularizer. We refer to [60] for a general overview
of variational methods in image processing.

The distinction between data term and regularizer in (15) often has a sta-
tistical background: Consider the problem of finding the best estimate of the
unknown quantity u, given some observation (input) I which is assumed to be
susceptible to noise, i.e. I is sampled from a random variable. Then, the config-
uration u with the highest probability can be inferred from the observation by
maximizing the probability

u∗ = arg max
u
P(u|I). (16)

The modeling process consists in specifying the conditional probability. The
conditional probability distribution can be either estimated directly, as in dis-
criminative models, or it can be deduced from the Bayes theorem: Problem (16)
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is equivalent to

u∗ = arg max
u
P(I|u)P(u) (17)

= arg min
u

{− log(P(I|u)) − log(P(u))}. (18)

This approach requires to define a generative model, i.e. the joint distribution of
the observation I and the unknown u. The right summand in (18) encodes prior
knowledge about the (a priori) likelihood of a particular configuration u, while
the conditional probability on the left relates possible u with the observation
I – which could be color, texture, or any other observable quantity –, and can
therefore be seen as the data term.

In fact, if one makes the common conditional independence assumption that
the conditional probability in (17) factorizes on a per-point basis, one obtains
(for finite Ω, i.e. after discretization):

− logP(I|u) = − log
∏

x∈Ω

P(I(x)|u(x)) (19)

=
∑

x∈Ω

− logP(I(x)|u(x)). (20)

For normally distributed noise, this corresponds directly to the classical `2 dis-
tance between u and I.

Some possible choices for s include:

– For color segmentation – which can be seen as a form of denoising with a
finite number of color values –, each label k is associated with a prototypical
color value ck. Then s(x, k) could be set to a distance measure between the
color I(x) in the input image at point x, such as ‖I(x)−ck‖2 (corresponding
to a Gaussian distribution), the more robust ‖I(x) − ck‖1, or many other
variants such as robust p-norms with p < 1.

– For general foreground-background segmentation, one usually estimates para-
metrized statistical models of the foreground and background, based on a
range of features such as color, edges, texture, and scale computed at each
point. The parameters and weights of the individual features are then deter-
mined in a learning step.

– For depth estimation from stereo image pairs, the labels correspond to possi-
ble point correspondences between the two involved images. For a calibrated
stereo camera system, these are physically restricted to a one-dimensional
subspace along the epipolar lines [34, 28]. The data term then describes how
well the hypothesis of a certain depth at a certain point is supported by the
observed images, i.e. how similar the corresponding image patches are.

Generally, the local cost term has a strong dependence on the input data, and
its structure typically cannot be reliably predicted beforehand.

However, since s only appears in linear form in (13), the complexity of the
original model does not affect the complexity of the functional f . In particular,
f is always convex and can therefore be solved to a global optimum, clearly
separating modeling and optimization aspects.
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2.2 Contour-Based and Level-Set Methods

The model (1) represents one of the most recent developments in a long history of
approaches for image segmentation on continuous domains. The first approaches
were contour-based, restricting themselves to the two-dimensional, two-class case
and parametrizing the interface between “class regions” Ω1 := `−1({1}) and
Ω2 := `−1({2}) explicitly in the form of a closed curve C : [0, 1] → R2, such as
the snake [36] and Geodesic Active Contours models [11].

The major drawback with these methods is that they do not easily cope
with different topologies. A major improvement consists in replacing the explicit
parametrization with the level set technique [11], i.e., representing C as the zero
set of some function φ : Ω → R with the convention C([0, 1]) = φ−1({0}). This
allows to propagate curves of arbitrary topology (and number) using a single,
fixed discretization, e.g. on a grid. The boundary curve C can be extracted
with sub-pixel accuracy from φ, and higher-dimensional cases d > 3 can be
transparently handled.

In the famous Active Contours Without Edges (Chan-Vese) approach [17],
this method is applied to a region-based energy, formulated in terms of the
interior and exterior of the region PC described by C,

f(C, c1, c2) =
∫

int(PC)

‖I − c1‖
2
2dx +

∫

ext(PC)

‖I − c2‖
2
2dx +

μ

∫ 1

0

‖∇C‖2dp (21)

This formulation can be seen as a continuous version of the ferromagnetic Ising
model [35] and is a special case of the more general model (1): in the two-class
case, Ω1 = Ω \Ω2 and ∂Ω1 = ∂Ω2. Therefore we may set s(∙, j) = ‖I − cj‖2

2 for
the labels j ∈ {1, 2}, and J(`) = μHd−1(∂Ω1), where Hd−1(∂Ω1) denotes the
(d − 1)-dimensional Hausdorff measure, i.e. the length or area, of the boundary
of Ω1.

These classical methods share several drawbacks:

– Level set-based methods suffer from the non-uniqueness of φ, which compli-
cates optimization.

– Edge-based approaches usually do not have a plausible statistical explana-
tion.

– Most importantly, the methods are inherently local, since they rely on an
incremental curve evolution. Therefore a good initialization is mandatory,
and model and optimization effects cannot be clearly separated.

Probably the most influential region-based model is the Mumford-Shah model
[53]. Motivated by the Gibbs field [29] and weak membrane energy [6] methods,
it can be seen as a first approach of explicitly introducing the possibility of
discontinuous solutions into a spatially continuous framework.
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It can be formulated as minimizing, for some constants λ, μ, ν > 0, the func-
tional

f(u) = λ

∫

Ω

(u − I)2dx +

μ

∫

Ω

‖∇u‖2
2dx + νHd−1(Su), (22)

where u ∈ SBV(Ω) is a special function of bounded variation. It is allowed to be
discontinuous on a non-empty set Su, and the gradient can be defined almost
everywhere (see [1] for the precise definitions).

The Mumford-Shah approach is not a pure labeling method in the strict
sense, but rather a case of simultaneous labeling (inference) and model parameter
optimization: it divides the image domain into an – a priori unknown – number
of connected components, on each of which the observation I is explained by a
smoothed version. This fact reflects in the non-convexity of the functional, which
is caused by the Hausdorff term.

If one considers the limit μ → +∞, restricts the model to two regions, and
assumes that the optimal constant values c1, c2 for each are known, one obtains
the Chan-Vese model (21), see also [53, 52] for many other limiting and special
cases. However, directly transferring optimization methods for the Mumford-
Shah functional to the labeling formulation is difficult:

– While the model (1) can be viewed as a generalization of the inference part
in the Mumford-Shah model, the latter is restricted to quadratic distances.

– Optimization methods for the Mumford-Shah model are generally tailored
to the main difficulty – the non-convex regularizer – and do not allow to find
globally optimal solutions of the labeling problem.

2.3 Convex Variational Approaches

The model (13) was originally motivated by the work of Chan, Esedoḡlu, and
Nikolova [16], who considered the objective

f (u′) = λ

∫

Ω

((1 − u′) (c1 − I)2 + u′ (c2 − I)2)dx

+ ν

∫

Ω

‖Du′‖2 , (23)

formulated on indicator functions u′ : Ω → {0, 1} representing the foreground
set, in order to solve the geometry denoising problem [16].

The total variation term in the rightmost integral evaluates exactly to the
length of ∂(u−1({0})) = ∂Ω1, corresponding to the uniform metric d(i, j) =
1{i 6=j}. Upon setting u1 := u′, u2 := 1 − u′, and

s(x) = (c2 − I)2 − (c1 − I)2, (24)
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this shows that the multi-class model (13) can be seen as a true extension of the
two-class formulation (23).

Convex approaches such as (23) and (13) have several major advantages:

– The functionals are region-based, do not require an explicit parametrization
of the boundary, and therefore can deal with partitions of arbitrary topology.

– As already noted, the data term is always linear in u, independent of its
original form.

– The functional is convex on the relaxed set of functions u′ → [0, 1], which
allows to find global minimizers.

Such problems have become known as continuous cut problems, in analogy
to combinatorial graph-cut techniques. For the two-class case, the dual problem
has been formulated in a maximal-flow setting in [62] and numerically solved in
[2]. It can be shown that the functional satisfies a “coarea-like” formula

f(u′) =
∫ 1

0

f
(
1{u′>α}

)
dα. (25)

From this in turn it can be shown that solutions of the relaxed problem, with
u′(x) ∈ [0, 1], can be thresholded at almost any threshold α such that the result-
ing integral ū′ := 1{u′>α} constitutes a solution of the original problem [16].

This stands in close analogy to discrete min-cut/max-flow problems, where
the optimal solution can be obtained in polynomial time. Such finite-dimensional
methods have been tremendously popular in image processing [8], however they
are inherently formulated on graphs, i.e. they are formulated on the discretized
problem, which often introduces an anisotropy, and prohibits rotational invari-
ance in a strict sense (Sect. 3).

Several slightly different formulations of the multi-class formulation (13) have
been proposed: The works of [66] and [45] mainly differ in the way the regularizer
is relaxed, one using the “decoupling” regularizer Ψ(z) =

∑l
i=1 ‖z

i‖2, and one
using the standard vectorial total variation Ψ(z) = (

∑l
i=1 ‖z

i‖2
2)

1/2. A system-
atic treatment was published by Chambolle et al. in [13], based on [58]. Their
approach differs from (13) in the sense that instead of embedding into Rl via
E = {e1, . . . , el}, they embed the labels into Rl−1, effectively reparametrizing the
unit simplex. Also, they already propose to use the tight regularizer (5) in the
slightly more restricted setting where d(i, j) = γ(|i− j|) for some nondecreasing,
positive, concave function γ.

In a sense, the piecewise constant Mumford-Shah formulation in [51] can
be seen as a predecessor of these approaches. The authors represent the label
assignment ` using a piecewise-constant real-valued function, and parametrize
this function using a set of l polynomial basis functions, which can be regarded
as the individual components of u.

3 Finite-Dimensional Models and Discretization

In this section we consider discretization strategies for the labeling problem. In
order to point out the differences between the approaches we consider the general
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setting: Assume the goal is to find an optimal labeling `∗ : Ω → I = {1, . . . , l}
based on input data I modeled as s : Ω → Rl, and assume that there is some
function space U and an objective function f depending on s, whose minimizer

u∗ = arg min
u∈U

f(u) (26)

provides some information about `∗. In our setting, U = BV(Ω, E) corresponds to
the combinatorial problem (2), and U = BV(Ω,Δl) to the relaxed problem (13).

In order to represent the problem in finite memory, one has to consider a
discretized problem, i.e. the goal is to find a finite-dimensional approximation
uh,∗ (where h denotes the scale, e.g. grid spacing) that approximates `∗ in some
sense, and can be computed by solving a finite-dimensional problem,

uh,∗ = arg min
uh∈Uh

fh(uh). (27)

Several important questions arise:

– How should Uh be chosen? In particular, should uh,∗ be restricted to the
same values as u∗, i.e. E or Δl?

– What are the semantics of uh,∗, i.e. in what sense does it provide information
about the original u∗?

– Do the discretized functionals fh converge to the original, spatially contin-
uous functional f? Moreover, is it possible to reconstruct u∗ from uh,∗ for
infinite resolution, i.e. do the minimizers of the discretized problems converge
to a minimizer of the original problem?

In the following, we consider several approaches and how they compare with
respect to these questions. In particular, we argue that it may be better not to
pose the finite-dimensional problem as a combinatorial problem, even if integral
solutions are required.

An important concept for such an analysis is Γ -convergence. This type of
convergence for sequences of functionals was introduced by De Giorgi [24] and
can be interpreted as set-convergence of the epigraphs [23, Chap. 4]; we refer to
[24, 23, 9] for an overview.

Two conditions have to be fulfilled for a sequence of functionals (fh) to Γ -
converge to a functional f : a “lim inf”-condition, i.e.,

f(u) 6 lim inf
h→0

fh(uh) (28)

for any u and any converging sequence (uh) → u in the domain of f , and a
“lim sup”-condition, i.e., for all u in the domain of f there must be a converging
sequence (uh) → u such that

f(u) > lim sup
h→0

fh(uh). (29)

The central feature of Γ -converging sequences used in the following sections is
that if a sequence of functionals fh Γ -converges to some functional f (and is
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equicoercive), then the minimizers of these functionals converge to a minimizer
of f [23, Def. 7.10, Thm. 7.23].

In particular, if it can be shown that a sequence of discretized functionals fh

converge to a continuous energy f as the grid spacing h approaches zero, this
implies that the minimizers of the discretized energies converge to the minimizer
of the original continuous energy (Sect. 3.2).

3.1 Combinatorial Finite-Dimensional Schemes

The classical approach for discretizing labeling problems is to fix, for some given
grid spacing h, a set of points {xī ∈ Rd |̄i ∈ J } on the image domain, where
J ⊆ Zd is a set of multi-indices, and to approximate the values `(xī). For
simplicity we assume that the original continuous domain Ω is the unit box
(0, 1)d and set J = {0, . . . , k − 1}d, where k is the grid size and h = 1/k is the
scale/grid spacing. We consider the regular grid

Ωh = {xī = (̄i + e/2)h|̄i ∈ J }. (30)

With any ` : Ω → I, we associate its discretization `h : Ωh → I, `h
ī

:= `(xī).
Classically, a discretized combinatorial energy fh : In → R is then con-

structed such that ideally fh(`h) approximates the energy f(`). Minimizing fh,
one obtains

`h,∗ = arg min
`h:Ωh→I

fh
(
`h
)
. (31)

In contrast to the continuous models (Sect. 2), the resulting problem is com-
binatorial in nature in the sense that it is formulated on a discrete, finite set.
However, since this set is very large, the problem is in general very hard to solve
without further knowledge about the structure of fh.

Markov Random Fields A common approach to model such structure is
to represent fh in terms of a Markov Random Field (MRF), also known as
an undirected graphical model . The MRF consists of an undirected graph G =
(V,E), where each vertex v ∈ V is associated with the variable `h (v). For the
uniform grid as above, we have V = Ωh and v = xī for some ī ∈ J . Note
that the common convention in graphical model literature is to denote by xv or
xi the random variables, and by vi (or just i) the vertices in V . This clashes
with the continuous formulation, where x is the spatial variable. For the sake of
consistency, we therefore denote by x or xī the vertices, and by `h

ī
= `h(xī) the

labels. In the MRF approach, fh is (non-uniquely) written as

fh(`h) =
∑

C∈cl(G)

ψC(`h
C), (32)

where the sum is taken over all sets cl (G) of cliques of G, `h
C ∈ I |C| denotes the

restriction of ` to the vertices in the clique, and ψC : I |C| → R are the individual
factors of f .
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Fig. 1. Graph-based discretization on a grid. Left to right: Pairwise terms with 4-,
6-, 8- and 16-neighborhood; higher-order discretization with ternary terms. The dots
correspond to the vertices of the graph, the lines indicate factors in the representation
(32) and weights in the pairwise representation (38).

The structure of (32) is directly related to the factorization of the correspond-
ing MRF distribution, that in turn is guaranteed by the Hammersley-Clifford
theorem and the conditional independence model related to set separation in
the underlying graph [42, 39]. Minimizing (32) amounts to computing the most
likely configuration for a given observation (MAP inference).

An important special case occurs when only unary (|C| = 1) and pairwise
(|C| = 2) terms exist, i.e. the graph G contains no higher-order cliques. In this
case fh can be written in pairwise form,

fh(`h) =
∑

x∈V

ψx

(
`h (x)

)
+

∑

(x,y)∈E

ψx,y

(
`h (x) , `h (y)

)
. (33)

This is the most popular approach for discretizing labeling problems with spatial
regularizers. In order to represent a local data term together with a regularizer
implementing the uniform metric (see the introduction and (7)), a classical choice
is to set

ψx

(
`h (x)

)
= s

(
x, `h (x)

)
= P(I(x)|`h(x)), (34)

ψx,y (p, q) =

{
wx,y, p 6= q,
0, otherwise

(35)

for some wx,y > 0, and choose E such that each vertex in the grid is connected to
its four neighboring vertices. This principle can be generalized by adding terms
for a larger neighborhood, such as 8 or 16 neighbors, or by adding higher-order
terms, i.e., terms that depend on three or more labels (Fig. 1).

Graph Cuts and Metrics For the two-class case, symmetric pairwise poten-
tials can be considered as edges in the grid graph. By adding some constant to
the overall energy, they can be normalized to

ψx,y (1, 1) = ψx,y (2, 2) = 0, (36)

ψx,y (1, 2) = ψx,y (2, 1) = wx,y, (37)
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where wx,y ∈ R is some weight, i.e. ψx,y (p, q) = wx,y1{p 6=q}. Then, discarding
the constant which is irrelevant for the optimization,

fh(`h) =
∑

x∈V

ψx

(
`h (x)

)
+

∑

(x,y)∈E

wx,y1{`h(x) 6=`h(y)}. (38)

This indicates that each edge yields a certain cost when the edge between x and
y is cut by the interface separating the two class regions. Minimizing the energy
(38) therefore amounts to computing a partition of the nodes into two subsets
that minimizes the total sum of the weights of the edges that are cut by the
interface between the partitions. The unary potentials can be are included by
adding edges to designated “source” and “sink” outside of the image plane.

For nonnegative wx,y such problems with pairwise terms can be solved in
polynomial time by min cut/max flow algorithms [5]. Therefore a central ques-
tion – which we will discuss in the next paragraphs – is how to discretize some
given spatially continuous functional f in a way such that the discretized energy
fh(`h) approximates the continuous energy f(`) if one sets `h

ī
= `(xī).

In [7], this question was answered for two-class problems. They consider
regularizers that are formulated in terms of the length of the interface between
the two classes, measured by a Riemannian metric (see [40] for a generalization
to a larger class of metrics). Specifically, let C : [0, |C|] → R2 denote some curve
parametrized by arc length with tangent τC , and define its anisotropic length
|C|R by

|C|R :=
∫ |C|

0

‖A (C (s)) τC (s)‖2 ds, (39)

where A : R2 → GL2 (R) defines the Riemannian metric. Such metrics can
be used as regularizers for two-class labeling problems by setting C = ∂Ω1 =
∂{x ∈ Rd|`(x) = 1}. In our framework (1) this corresponds, for some suitable
A′ : R2 → GL2 (R), to the length-based regularizer

J(`) =
∫

Rd

∥
∥
∥
∥A

′ D1P 1

|D1P 1 |

∥
∥
∥
∥

2

d |D1P 1 | . (40)

The mathematically precise formulation (40) in terms of measure-valued deriva-
tives of discontinuous functions can indeed be intuitively interpreted as contour
integrals penalizing boundaries of a partition [1, 43]. For A = A′ = I we obtain
the classical isotropic length of ∂Ω1.

We denote by N = N (x) =
{
y1, . . . , y|N |

}
the neighborhood system of x,

i.e. vertices connected to x via an edge, and assume that such a system is given.
Examples are 4-, 6-, 8- or 16-neighborhoods as shown in Fig. 1. Then, for some
fixed x, the vectors

gm := ym − x, m = 1, . . . , |N | (41)
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denote the offsets between some point x and its neighbors. Assuming that the gm

are in increasing order with respect to their angle αm relative to g1, Boykov et
al. [7] construct a regularizer Jh with pairwise potentials as in (38) by choosing
the weights according to

ψx,ym (p, q) = wx,ym1{p 6=q},

wx,ym =
h2 ‖gm‖2

2 (αm+1 − αm) det (A (x))

2 ‖A (x) gm‖3
2

. (42)

Under some regularity assumptions on `, they show that Jh(`h) then converges
to J(`) if

h → 0, supm |gm| → 0 and supm |αm| → 0. (43)

This establishes a consistency result for the representation of metrics using pair-
wise terms. However it also has some drawbacks:

– The result only holds for two-class problems and on two-dimensional grids.
– Convergence of the energy is only shown pointwise. There is no indication

how minimizers of functionals involving Jh relate to minimizers of the as-
sociated spatially continuous problem.

– While the choice of weights is good enough to give the desired result in the
limit, it does not necessarily provide an (in some sense) optimal representa-
tion for a given connectivity.

– The last condition in (43) implies that the neighborhood size must approach
infinity in order to obtain a consistent scheme.

In particular the last point is troublesome, as it means that the number of
pairwise potentials must grow faster than the number of vertices for h → 0. Since
solvers for such problems usually rely on solving the dual “max flow” problem
on the edges of the graph, the increasing connectivity multiplies the problem size
and greatly slows down optimization. This problem becomes potentially worse
in higher dimensions due to the larger neighborhood.

Pairwise Functionals and LP Relaxation One distinct advantage of the
pairwise energy (38) is that it has a tight natural linear programming (LP)
relaxation in the two-class case: Associate `h with uh : Ωh → {0, 1} in the sense
that uh (x) = 0 ⇔ `h (x) = 1, and consider the relaxed problem

min
uh∈[0,1]n

fh
LP

(
uh
)
, (44)

fh
LP

(
uh
)

:=
∑

x∈V

(ψx (1) − ψx (2))uh (x) +

∑

(x,y)∈E

wx,y

∣
∣uh (x) − uh (y)

∣
∣ . (45)
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Such formulations are very versatile and, by varying the graph structure and
the weights, can also be adapted to many other problems besides segmentation,
see [33] for a recent overview.

Problem (44) can clearly be solved as a linear program. One can also show
that for wx,y > 0, integral solutions of the pairwise energy fh from (38) can
be found by minimizing the LP relaxation fh

LP and thresholding (cf. [14] and
Sect. 4).

By setting uh (x) := u(x), the LP energy (44) can be extended to the set of
relaxed functions u : Ω → [0, 1] as follows:

fLP (u) :=
∑

x∈V

(ψx (1) − ψx (2))u (x) +

∑

(x,y)∈E

wx,y |u (x) − u (y)| . (46)

Although formulated on functions defined on continuous domains, energies such
as (46) are formulated in a nonlocal way, i.e. using a sum of pairwise differences
instead of local properties such as ∇u. A comprehensive analysis can be found
in [30], where the authors consider energies of the form

JG,h(u) =
∫

Rd

∫

Rd

η(g)ϕh‖g‖2

(
|u(x + hg) − u(x)|

h‖g‖2

)

dgdx, (47)

where u ∈ L1
loc(R

d), η ∈ L1(Rd) with 0 6= η > 0, and for each h, ϕh : R>0 → R>0

is continuous, nondecreasing and either convex, concave, or pieced together from
a convex and a concave part. Moreover, let ψ and ϕ be the Γ -limits for h → 0
of hϕh(z/h) and ϕh(z), respectively, and define

JG(u) :=
∫

Rd

∫

Rd

ϕ(|〈∇u, g/‖g‖2〉|)η(g)dgdx +

‖η‖L1

∫

Su

ψ(|u+ − u−)|)dHd−1. (48)

Then, under some technical assumptions, the functionals JG,h Γ -converge to
JG in L1

loc as h → 0 [30, Thm. 4.3]. As a consequence, one obtains pointwise
convergence of the functionals, as well as convergence of their minimizers.

This convergence result can be seen as an extended variant of the result in [7]
(cf. (43)), formulated for nonlocal functionals in terms of (possibly non-integral)
functions u. However, in formulation (47) the finite sum of pairwise terms (33)
has been replaced by the convolution with weights specified by ϕh. Therefore, it
cannot be formulated on finite-dimensional representations of u, since it depends
on the values of u on all of Rd.

A formulation closer to (33) has been considered in [12], in order to approx-
imate the nonconvex part of the Mumford-Shah energy,

JMS(u) = λ

∫

Rd

‖∇u‖2
2dx + μHd−1(Su). (49)
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The considered nonlocal energies are of the form

Jh
N (uh) = (50)

∑

ī∈J

hd
∑

j̄∈Zd

1
h

ϕh






(
uh
(
xī+j̄

)
− uh

(
xī
))2

h




 η (j̄) ,

i.e. if one again sets uh
(
xī
)

= u
(
xī
)
, then

Jh
N (uh) = (51)

∑

ī∈J

hd
∑

j̄∈Zd

1
h

ϕh






(
u
(
xī + hj̄

)
− u

(
xī
))2

h




 η (j̄) .

Under some technical assumptions, these functionals can be shown to Γ -converge
to

JN (u) =
∫

Ω

∑

j̄∈Zd

η (j̄) αj̄ | 〈∇u, j̄〉 |2dx +

∫

Su

∑

j̄∈Zd

η (j̄) βj̄ | 〈νu, j̄〉 |dHd−1 (52)

for a collection of scalar weights αj̄ and βj̄ .
As a special case assume that u is integral, i.e. u : Ω → {0, 1}. Then the

absolutely continuous part of Du vanishes, i.e. ∇u = 0, and JN (u) is precisely
the length of the discontinuity set Su as defined by the right-hand integral in
(52). Clearly, in order to obtain an isotropic regularizer in the limit, there must
be infinitely many η(j̄) 6= 0: the image domain and the connectivity needs to be
infinitely large. This parallels the result of Boykov et al. in the graph cut setting.

The above results show that it is possible to approximate energies involv-
ing length-based terms using sums of pairwise terms, even for non-integral u.
However, as for the graph cut approach, a finite neighborhood size invariably
introduces an anisotropy.

Note that all these results are formulated on scalar u, and therefore apply
directly only to the two-class case. However, they still provide an indication on
what issues can be expected when applying similar techniques to multiclass label-
ing problems with vector-valued u. A prototypical finite-dimensional extension
to the multi-class case is the LP relaxation [37, 41]

fh
MLP

(
uh
)

:=
∑

x∈V

l∑

j=1

ψx(j)
(
uh (x)

)
j
+

1
2

∑

(x,y)∈E

wx,y‖u
h (x) − uh (y) ‖1, (53)
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where fh
MLP is minimized over all uh : Ωh → Δl. Unfortunately, unlike the two-

class case, integral solutions cannot trivially be obtained using thresholding due
to the constraints.

Note that (53) is essentially a non-local, discretized version of the main model
(2), where sj(x) is defined by ψx(j) and Ψ is replaced by a non-local, weighted
integral defined by the wx,y.

It is also worth mentioning that recent works [61, 20] have led to a non-linear
generalization of the basic LP relaxation, where the energy (46) is replaced by

fh
PW

(
uh
)

:=
∑

x∈V

ψx(1)p|1 − uh(x)|q +

∑

x∈V

ψx(2)p|uh(x)|q +

∑

(x,y)∈E

(wx,y)p
∣
∣uh (x) − uh (y)

∣
∣q , (54)

for some p, q ∈ [0,∞] and the resulting u is thresholded at 1/2 to obtain in
integral result. By varying p and q one obtains – in a limit sense in case p = ∞
or q = ∞ – variants of the Voronoi, Graph Cut, Random Walker and Shortest
Path Forest segmentations.

A special case termed Power Watersheds is the limit p → ∞ with 1 < q < ∞.
The solutions can be approximated efficiently and show very little geometric
artifacts [20]; however we are not aware of any rigorous convergence proofs for
infinitesimal grid spacing comparable to those available for the LP formulation.

3.2 Finite-Differences Schemes and Convergence

The above-mentioned methods all have in common that in order to achieve
isotropy, even in the limit, they require either an infinite number of terms or an
adaptive discretization. In this section we apply a finite-differences scheme from
[13] which has a fixed neighborhood but still provides isotropy in the limit. This
allows to keep the number of artifacts low without introducing nonlocal terms
that would greatly increase the computational cost.

The original work [13] already contains informal versions of the convergence
theorems; we provide a rigorous formulation in our framework and strengthen
them to also obtain equicoercivity. We confine ourselves here to detailing the
discretization and the main results. For technical details we refer to [43].

Again we represent multidimensional functions u : V → Rl on Ω by a matrix
uh = (uh,1| . . . |uh,l) ∈ Rn×l. The l-dimensional vector associated with ī or xī is

denoted by uh
ī

= uh
(
xī
)
∈ Rl. The standard forward-differences approximation
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for ∇u
(
xī
)

is

∇īu
h =

1
h









(
uh

ī+e1 − uh
ī

)>

...
(
uh

ī+ed − uh
ī

)>









, (55)

with the convention uh
ī+ej := uh

ī
if ī corresponds to a point on the right boundary,

i.e. ī+ej > nj = k. For some s ∈ L∞ (Ω) we compute the discrete approximation
sh by

sh
ī := sh

(
xī
)

:=
1
hd

∫

Ch
ī

s(x)dx, (56)

where Ch
ī

denotes the box corresponding to the ī-th pixel in the image,

Ch
ī := xī +

1
2

(−h, h)d (57)

= (i1h, (i1 + 1)h) × ∙ ∙ ∙ × (idh, (id + 1)h). (58)

Then, for the relaxed multiclass labeling functional (13), we define the discretiza-
tion

fh
(
uh
)

:=
∑

ī∈J

hd
〈
uh

ī , sh
ī

〉
+
∑

ī∈J

hdΨ
(
∇īu

h
)
. (59)

The forward-differences scheme introduces a slight asymmetry. Although this has
no effect on the Γ -convergence as shown below, it can be somewhat reduced by
taking the mean over variants that use backward- and mixed forward-backward
differences.

In order to properly define consistency and convergence of minimizers in a
common function space, we identify each discretized function

uh ∈ Uh :=
{
uh : Ωh → Δl

}
= (Δl)

n (60)

with the piecewise constant function ũh ∈ BV(Ω)l,

ũh(x) = uh
(
xī
)
∈ Rl,Ld-a.e. x ∈ Ch

ī . (61)

For each h, we denote by Ũh the space of such piecewise constant functions ũh,

Ũh =
{

u ∈ BV (Ω)l |∃uh ∈ Uh : u = ũh
}

. (62)

Likewise, we extend some functional fh : Uh → R to BV (Ω)l by setting

f̃h : BV (Ω)l → R̄ (63)

f̃h (u′) :=

{
fh
(
uh
)
, ∃uh ∈ Uh : u′ = ũh,

+∞, otherwise.
(64)
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In the following, we will see that the discretized functionals f̃h Γ -converge, for
h → 0, to the true constrained functional fC ,

fC : BV (Ω) → R, (65)

fC (u) :=
∫

Ω

〈u, s〉 dx +
∫

Ω

dΨ (Du) + δC(u). (66)

Note that the following propositions do not require Ψ to be isotropic.

Proposition 1. Let Ψ : Rd×l → R be continuous, convex and positively homo-
geneous with ρl‖z‖2 6 Ψ(z) 6 ρu‖z‖2∀z ∈ Rd×l for some 0 < ρl 6 ρu, and
define

JC(u) :=
∫

Ω

dΨ(Du) + δC(u). (67)

Denote

J̃h(u′) :=

{∑
ī∈J hdΨ

(
∇īu

h
)
, ∃uh ∈ Uh : u′ = ũh,

+∞, otherwise.
(68)

Then J̃h Γ -converges (with respect to L1-convergence) to JC for h → 0.

Proof. An outline can be found in [13, Prop. 3.1]. The “lim inf” part is shown
by proving that

lim inf
h→0

J̃h(ũh) > −
∫

Ω

〈u, Div v〉dx , (69)

which is technical but straightforward after substituting the exact definition of
J̃h. Showing the “lim sup” inequality amounts to finding, for arbitrary but fixed
u ∈ BV(Ω)l, a sequence (ũh) converging to u in L1 s.t.

lim sup
h→0

J̃h(ũh) 6 JC(u). (70)

This is achieved by choosing a sequence of smooth functions (u(j)) ⊆ {u : Ω →
Δl|u ∈ C∞(Ω)l} converging to u in L1 and satisfying TV(u(j)) → TV(u), which
is possible due to [1, Thm. 3.9]. It is important to note that these functions
are constructed by mollification, i.e., they are generally not integral even if u
is. Then it is possible to show that by evaluating u(j) at suitable points and
restriction to a subsequence, one can find a sequence ũi that fulfills (70). We
refer to [43] for the full derivations.

Theorem 1. Let fh, fC as defined in (59), (65) for s ∈ L∞(Ω), s > 0. Then f̃h

as defined in (63) Γ -converges with respect to L1-convergence to the constrained
functional fC for h → 0 and is equicoercive with respect to the L1-topology.
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Proof. Denote the data term by

gh(uh) :=
∑

ī∈J

hd〈uh
ī , sh

ī 〉, (71)

then fh = gh + Jh. For any ũh ∈ Ũh, one can show that g̃h(ũh) =
∫

Ω
〈ũh, s〉dx.

Therefore, since J̃h(u) = +∞ for all u 6∈ Ũh, f̃h can be represented as

f̃h(u) =
∫

Ω
〈u, s〉dx + J̃h(u) (72)

for any u ∈ BV(Ω)l, with the data term independent of h. Since s ∈ L∞(Ω),
the linear term is continuous with respect to L1-convergence. Therefore, since
Γ -convergence is stable under continuous perturbations [9, Rem. 1.7], and J̃h

Γ -converges to JC due to Prop. 1, f̃h Γ -converges to fC .
In order to show equicoercivity, by [23, Def. 7.6, Prop. 7.7] it suffices to

provide a lower semicontinuous, coercive function f ′ with f̃h > f ′ uniformly for
all h. This can be achieved by considering the spatially separable Ψ ′ : Rd×l → R,

Ψ ′











(z1)>

...
(zd)>









 :=

ρl√
d

d∑

j=1

‖zj‖2 (73)

and the corresponding functional f ′
C and discretization f̃ ′h. Again we refer to

[43] for the details.

Remark 1. In view of [23, Def. 7.10, Thm. 7.23], Thm. 1 shows that from a se-
quence (uh) of minimizers of the discretized problems fh, a (piecewise constant)
sequence (ũh) of functions on the continuous domain Ω can be constructed that
converge to a minimizer of the original, isotropic energy f .

Thm. 1 can also be in part applied to pairwise energies for multiclass prob-
lems. In particular, consider the multiclass LP relaxation (53) with a simple

4-neighborhood, setting ψx(j) = hd
(
sh
(
xī
))

j
and wx,y = hd−1. This energy

coincides with fh as in (59) for the integrand

Ψ(z) =
d∑

i=1

l∑

j=1

|
(
zj
)
i
|. (74)

Therefore Thm. 1 shows that the (properly weighted) LP relaxation objective
Γ -converges to the anisotropic objective

f1(u) =
∫

Ω

〈u, s〉dx +
d∑

i=1

∫

Ω

d‖Diu‖1 + δC (u) , (75)

i.e. it with the exception of the constraints it is separable.
While formulated for the forward differences discretization (55), these results

can be generalized to most related schemes, such as backward- and centered
differences, and up-/downwind schemes as used in [15].
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Remark 2. Finite-differences discretizations generally do not fulfill a coarea-like
formula such as (25) even if the continuous problem they were derived from has
this property, as in the case of the two-class continuous cut. Therefore it is not
trivial to obtain integral minimizers, in contrast to pairwise energies. However,
the finite-differences energy approximates isotropic regularizers without requir-
ing an infinitely large neighborhood in the limit. Moreover, in the following
sections we will argue that computing an integral minimizer may actually not
be the optimal approach.

3.3 Dual Approaches

Recently several authors have also proposed to use dual discretization approaches
in the context of image segmentation [21, 3]. These approaches rely on a dual
representation of the regularizer, and can be applied to (13) using the primal-
dual equivalency

inf
u∈C

∫

Ω

〈u(x), s(x)〉dx +
∫

Ω

Ψ(Du) (76)

= sup
v∈D

∫

Ω

min{0, s − Div v}dx, (77)

D := {v ∈ (C∞
c (Ω))d×l|Φ(v(x)) 6 1, ∀x ∈ Ω}, (78)

where Φ refers to the dual norm of Ψ . Then v is discretized on the edges of
a 4- or higher-connected graph (cf. Fig. 1), and the constraint Φ(v(x)) 6 1 is
discretized on the vertices [21] or cell centers [3].

The key is that the local constraints that define D do not have to be (point-
wise) separable after discretization, and in fact non-separable choices have been
observed to give good results. The main difficulty is that under these discretiza-
tions the regularizer in (76) cannot be evaluated easily, therefore the dual prob-
lem must be solved instead. A primal solution u can then be recovered using the
multipliers of an interior-point scheme [21] or a combination of dual smoothing
and thresholding [3].

3.4 Experimental Comparison

In order to evaluate the practical consequences of the above theoretical results,
we compared the different approaches on several two-class labeling problems,
i.e. continuous cut problems.

Due to the coarea-like property (25), the original continuous problem then
admits an integral minimizer. In particular this implies that if the solution is
unique then it is integral. Therefore, by restricting ourselves to the two-class
case, we make sure that any fractional solutions of the discretized problems are
purely caused by the discretization.

We compared the following energies:
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discretization w1 w2 w3 w4

4-neighborhood π
4

8-neighborhood π
8

π

8
√

2

16-neighborhood arctan(1/2)
2

arctan(2)−arctan(1/2)

2
√

2

π/4−arctan(1/2)

2
√

5

π/2−arctan(2)

2
√

5

6-nb/fd-fw (comb.)
√

2
2

2−
√

2
2

8-nb/fd-sym (comb.)
√

2
2

2−
√

2
4

Table 1. Weights used for the graph-based pairwise discretizations (cf. Fig. 1). The
weights in the last two rows were chosen to match the finite-differences energies (fd-fw
and fd-sym) on integral labelings.

– Classical pairwise energies with 4-, 8-, and 16- neighborhood (44) as depicted
in Fig. 1 (n4,n8,n16 ). The weights were chosen according to (42) and are
listed in Table 1. For non-integral labelings, the pairwise LP relaxation (46)
was employed.

– The “isotropic” forward-differences scheme as outlined in Sect. 3.2 (fd-fw),
an averaged variant that also involves backward differences in order to make
it more symmetric (fd-sym), and centered differences evaluated on the cell
centers (center).

– First- and second-order [59] upwind discretizations (up1,up2 ). We also im-
plemented the up-winding approach of [15] and found that the energies were
generally so close to up1 as to be visually indistinguishable, therefore we
omit them from the figures.

– The “combinatorial continuous maximal flow” [21] and “mimetic” [3] dual
discretizations from Sect. 3.3 (ccmf-d, mi-d ) and their primal counterparts
(ccmf-p, mi-p).

Anisotropy of the Discretization In order to get a quantitative impression
on the anisotropy induced by the various methods, we evaluated the energies
on a labeling uh rotated by different angles. The rotated source labelings were
generated at a resolution of 512× 512 pixels and downscaled to 128× 128 pixels
in order to reduce artifacts (Fig. 2).

We first evaluated the functionals on integral labelings (Fig. 3). Since the
images were artificially generated, the true length is known to be π + 2 = 5.14
for the half disc with radius normalized to 1. The anisotropies of the 4-, 8-,
and 16-neighborhood are clearly visible with the number of bumps increasing
and the magnitude of the anisotropy decreasing for larger neighborhoods. The
isotropic finite-differences and dual energies seemingly do not work very well in
comparison: the energy is overestimated, and they show large oscillations.

However, when the edges of the shape are slightly blurred, the picture changes
(Fig. 4): for a light 4-pixel Gaussian blur, the variation of the finite-differences
and dual energies over all rotations is already close to one pixel width (an en-
ergy difference of 0.024 at this scale), with the center, ccmf-d, and mi-d energies
showing the least amount of anisotropy. For a 10-pixel blur, the anisotropy fur-
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Fig. 2. Artificial labelings uh used for the tests in Fig. 3 and Fig. 4. First row:
The integral labelings were downscaled from a larger 512 × 512 pixel image, rotated
by different angles. Second and third row: Non-integral labelings were similarly
obtained by smoothing the source image using a Gaussian filter with increasing variance
and subsequent downscaling.
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Fig. 3. Energy of the rotated integral labelings in Fig. 2, first row, vs. rotation an-
gle. The pairwise discretizations with 4-, 8-, and 16-neighborhoods exhibit a distinct
anisotropy, which decreases as the neighborhood size increases. On such integral label-
ings the isotropic finite-differences- and dual energies overestimate the true length.
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Fig. 4. Energies for the fractional labelings in Fig. 2, second and third row (note the
different scales). By allowing a certain amount of factional labels, the isotropy of the
finite-differences- and dual energies is greatly improved. Note that a ground truth is
not available since the total variation is affected by the smoothing process; this also
explains the overall lower energies compared to Fig. 3.

ther decreases. The important point is that this is only possible because we allow
a moderate amount of fractional labels.

In contrast, the LP relaxations of the graph cut energies show no reduction
in the discretization-induced anisotropy, with a length variation equivalent to 3
(n16 ), 6 (n8 ) and 25 (n4 ) pixels, clearly preferring some directions over others.

3.5 Consistency of the Discretization

As noted in Sect. 3.1, pairwise energies can be shown to approximate the true
length for infinitesimal grid spacing, but only if the neighborhood size simulta-
neously grows to infinity. To investigate whether this is a problem in practice,
we first computed a large half-disc shaped template with a size of 2048 × 2048
pixels. From this template we generated a range of downscaled copies with res-
olutions down to 32× 32 (Fig. 5). For each resolution we computed the energies
using the different regularizers.
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Fig. 5. Labelings used for comparing the isotropy of the regularizer at different reso-
lutions (Fig. 6). Top row: Discretization of labeling functions for grid sizes between
32× 32 and 2048 × 2048. Bottom row: Detail (lower left corner).
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Fig. 6. Energy comparison for different resolutions. Shown are the energies for the
templates in Fig. 5 vs. the horizontal grid size k ∈ {32, . . . , 2048}. For a fixed neighbor-
hood, the graph-based energies (n4, n8, n16 ) exhibit a systematic anisotropy, while the
finite-differences and dual discretizations converge to the true energy as the resolution
increases (note that fd-fw and fd-sym coincide in this example). Fastest convergence is
achieved by the centered differences (center), upwind (up1 ), and dual discretizations
(ccmf-d,mi-d).

It becomes apparent that the LP relaxation-/graph cut-based energies exhibit
the same anisotropy over all scales if the neighborhood size is kept the same,
and systematically underestimate the true length (Fig. 6). This is in accordance
with the observations in Sect. 3.1 (see also (75)): for a fixed neighborhood size,
the discretized functionals Γ -converge to an anisotropic spatially continuous
functional. In contrast, the length estimated by the finite-differences schemes
converges to the true length as the resolution increases as predicted by Prop. 1.

When the template is rotated by 45 degrees, the 4-neighborhood energy in-
creases beyond the ground truth, while the finite-differences energies again con-
verge to the true length (Fig. 7). The fastest convergence is achieved by the cen-
tered differences (center), upwind (up1 ), and dual discretizations (ccmf-d,mi-d).
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Fig. 7. Variant of the experiment in Fig. 6 for a rotated template. Again, the graph-
based discretizations exhibit a systematic error. Due to the rotation, the true length is
now overestimated by the 4-neighborhood pairwise energy (n4 ). The finite-differences
and dual energies converge to the true isotropic length.

integrality n4 n8 n16 fd-fw-c fd-sym-c center ccmf-d
β = 0.05 100.00 100.00 100.00 100.00 100.00 97.19 96.66
β = 0.01 100.00 100.00 100.00 100.00 100.00 96.14 95.14

integrality up1 mi-d fd-fw up2 fd-sym mi-p ccmf-p
β = 0.05 96.44 96.24 94.71 94.17 93.33 92.02 89.21
β = 0.01 95.12 94.73 92.79 90.67 90.80 88.99 84.64

Table 2. Percentage of points in which min(|u(x)|, |1 − u(x)|) < β for the different
regularizers, sorted in ascending order. Minimizers of the combinatorial energies are
fully integral. In this example, centered differences (center, highlighted red) achieve
the least amount of fractional values amongst the isotropic energies. Isotropic energies
that use larger neighborhoods (ccmf-p, mi-p, also fd-sym, up2 to some extent) perform
worse as the larger stencil decreases resolution.

3.6 Integral and Fractional Minimizers

In order to see how the choice of the discretization affects the minimizer, consider
the problem in Fig. 8, first row. The input consists of an image with two slightly
rotated circular segments. The gray regions are “uncertain” and have to be
filled in by the regularizer. We added subtle Gaussian noise in order to render
the minimizer unique.

The minimization problems were solved to a high accuracy (relative gap 10−8)
in order to avoid effects caused by suboptimal solutions. We used the commercial
MOSEK solver, which employs an interior-point method that is well suited to
solving small problems to high accuracy. The results of the graph-based energies
are integral and thus global minimizers of their energies over the set of integral
labelings.



Discrete and Continuous Models for Partitioning Problems 27

n4 n8 n16 fd-fw fd-fw
(comb.)

fd-
sym

fd-
sym

(comb.)

center up1 up2 ccmf-
p

ccmf-
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Fig. 8. Segmentation results for different discretizations. First row: Input image. Sec-
ond row: Minimizers for the different discretizations. The graph-based discretizations
generate artifacts in the solution. The finite-differences energies show significantly less
artifacts and generate fractional labelings at the boundaries. Third row: Thresholded
solutions. The thresholded fractional solutions of the finite-differences and dual energies
result in a better approximation of the desired shape than the integral solutions of the
graph-based pairwise energies.

n4 n8 n16 fd-fw fd-fw
(comb.)

fd-sym fd-sym
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center up1 up2 ccmf-p ccmf-d mi-p mi-d

Fig. 9. Minimizers for the artificial test function s(x) = 1/‖x‖ − 3/2. The artificial
coloring highlights non-integral values (yellow). The combinatorial energies have fully
integral minimizers but a visible anisotropy. Of the isotropic energies, centered differ-
ences (center) and the dual energies (ccmf-d,mi-d) perform best with respect to the
integrality of the solution (see also Table 2).
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For this experiment we additionally included two regularizers proposed in
[38]. They correspond to a restriction of the finite-differences energies to combina-
torial objectives, i.e., they coincide with the finite-differences energy on integral
labelings. The observation made in [38] was that these regularizers can be repre-
sented using submodular ternary potentials and therefore be globally optimized.
In fact, it turns out that both regularizers can be implemented using pairwise
terms only by adding diagonal edges, resulting in 6- and 8- neighborhoods (fd-fw
(comb.), fd-sym (comb.) in Fig. 1, Table 1). By construction, minimizers of these
energies minimize the finite-differences objective on the set of integral labelings .

From the results it becomes clear that all graph-based pairwise energies ex-
hibit visible artifacts due to the anisotropy (Fig. 8, second row). Enlarging the
neighborhood reduces the artifacts, however they cannot be completely avoided.
In contrast, the isotropic energies generate solutions that are much closer to an
approximation of the true, continuous solution, with a small amount of fractional
labels at the slanted edges.

As mentioned in the discussion, there may be cases where an integral out-
put is required. We therefore thresholded the output of the finite-differences
methods at 1/2 (Fig. 8, last row). Again, the solutions obtained by solving the
finite-differences approximation of the relaxed problem and subsequent thresh-
olding are visually superior to the solutions obtained by minimizing the pairwise
energies.

In order to test the amount of fractional labels introduced by the discretiza-
tions, we computed the minimizers for an artificial rotationally symmetric in-
put (Fig. 9). The pairwise energies generate fully integral solutions, but the
anisotropy is clearly visible; this is also the case for some non-symmetric finite-
differences energies (fd-fw, up1 ). The primal energies ccmf-p, mi-p clearly suffer
from their larger stencils. The centered and dual energies (center, ccmf-d, mi-d )
perform best, see also the quantitative comparison (Table 2).

Naturally the question arises how fractional minimizers of the finite-differences
energy compare to integral minimizers, i.e. whether it makes sense to minimize
the finite-differences energy in a combinatorial setting. From Fig. 10 it becomes
clear that this cannot be recommended:

Integral minimizers of the finite-differences energy are visually clearly
inferior to those obtained by rounding a fractional solution.

In fact, the latter are not integral minimizers, as can be seen by comparing the
energies (Table. 3). This effect has also been observed in [38], and may seem
quite counter-intuitive at first. We will discuss its implications in Sect. 6.

In particular, it indicates that isotropic energies over the set of integral label-
ings may not be an optimal approach. For the same reason, comparing energies
of solutions obtained by rounding and solutions obtained by combinatorial op-
timization has only very limited value, since the energy does not necessarily
provide an indication which solution better approximates the spatially continu-
ous solution.

In order to focus on the quality of the discretization, all of the above results
were computed on the two-class problem. In the multi-class setting, additional
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input fd-sym fd-sym fd-sym
fractional +rounding combin.

Fig. 10. Minimizing energies over fractional vs. integral labelings. Finding a minimizer
(second from left) of the finite-differences discretization and subsequent rounding (sec-
ond from right) results in less artifacts than solving the combinatorial problem of
minimizing exactly the same energy over the set of integral labelings (right).

problem fractional rounded combinat.

1st row Fig. 10 -2207.13 -2164.41 -2166.86

2nd row Fig. 10 -2213.08 -2177.46 -2181.04

Table 3. Energies for the solutions in Fig. 10. The rounded fractional solution is not a
combinatorial (integral) minimizer of the energy, but it is nevertheless visually clearly
superior. This is an example where it is not reasonable to minimize the energy under
an integrality constraint.

uncertainties may be introduced by the relaxation of the continuous problem.
Therefore, fractional solutions cannot be unambiguously classified as caused by
either the discretization or the relaxation. However, in principle the above con-
siderations also apply – with less theoretical justification – to the multi-class
case.

4 Optimality and Rounding

As noted above, the multiclass relaxation (13) is convex and can thus be solved
globally optimal. However, the minimizer u∗ of the relaxed problem may not lie
in CE , i.e., it is not necessarily integral. Therefore, in applications that require
a true partition of Ω, some rounding process is needed in order to generate an
integral labeling ū∗. Unlike in the two-class case, this may increase the objective,
and lead to a suboptimal solution of the original problem (2).

Note that this behavior is independent of the effects discussed in the pre-
vious section, where we considered the occurrence of fractional labels due to
the process of switching from the continuous problem formulation to a discrete ,
finite-dimensional one, and explicitly ruled out relaxation effects by exclusively
considering the two-class case. In this section, we consider the second source of
fractional solutions, which is the relaxation of the original combinatorial multi-
class problem to a convex problem, and rule out discretization effects by working
completely in the spatially continuous setting.
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An important question is whether it is possible to obtain, using the con-
vex relaxation (13), integral solutions with an upper bound on the objective.
Specifically, we concentrate on inequalities of the form

f(ū∗) 6 (1 + ε)f(u∗
E) (79)

for some constant ε > 0, which provide an upper bound on the objective of
the rounded integral solution ū∗ with respect to the objective of the (unknown)
optimal integral solution u∗

E of (2). The specific form (79) can be attributed to
the alternative interpretation

f(ū∗) − f(u∗
E)

f(u∗
E)

6 ε, (80)

which provides a bound for the relative gap to the optimal objective of the com-
binatorial problem. Such ε can be obtained a posteriori by actually computing
(or approximating) ū∗ and a dual feasible point: Assume that a feasible primal-
dual pair (u, v) ∈ C × D is known, where u approximates u∗, and assume that
some integral feasible ū ∈ CE has been obtained from u by a rounding process.
Then the pair (ū, v) is feasible as well since CE ⊆ C, and from the considerations
in Sect. 4 we obtain an a posteriori optimality bound of the form (80) with
respect to the optimal integral solution u∗

E :

f(ū)−fD(u∗
E)

fD(u∗
E) 6 f(ū)−fD(u∗

E)
fD(v) 6 f(ū)−fD(v)

fD(v) =: ε′ . (81)

However, this requires that f and fD can be accurately evaluated, and requires
to compute a minimizer of the problem for the specific input data, which is
generally difficult, especially in the spatially continuous formulation.

In contrast, true a priori bounds do not require knowledge of a solution and
apply uniformly to all problems of a class, irrespective of the particular input.

When considering rounding methods, one generally has to discriminate be-
tween

– deterministic vs. probabilistic methods, and
– spatially discrete (finite-dimensional) vs. spatially continuous methods.

Most known a priori approximation results only hold in the finite-dimensional
setting, and are usually proven using graph-based pairwise formulations. In con-
trast, in this section we will again focus on an “optimize first” perspective. From
the remarks in Sect. 2.3, we see that in the spatially continuous setting the
two-class problem admits the trivial rounding approach with

ū∗
α := e11{u∗

1>α} + e21{u∗
16α} (82)

for almost every α > 0 due to the coarea formula. In view of the ε-optimality
bound (79), this amounts to f(ū∗) = f(u∗

E), i.e. ε = 0. In the finite-dimensional
multiclass case, the most prominent approaches for finding integral combinatorial
minimizers are the α-expansion approach, more general move-making methods
such as continuous binary fusion, and LP relaxations. In the following sections,
we give an overview of the various connections.
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Algorithm 1. Graph-Based α-Expansion

1: Choose `(0) : V → I.
2: k ← 0.
3: repeat
4: for all j ∈ I do

5: For V ′ ⊆ V , let `j,V ′(x) :=

{
j, x ∈ V ′,

`(k)(x), x 6∈ V ′.

6: Find V ′ s.t.

`′ := `j,V ′ = arg min
V ′⊇{x∈V |`(k)(x)=j}

f(`j,V ′). (84)

7: `(k+1) ←

{
`′, f(`′) < f(`(k)),

`(k), otherwise.
8: k ← k + 1.
9: end for

10: until f
(
`(k)
)

did not decrease in at least one of the inner iterations.

11: Output: `+ := `(k).

4.1 Isolation Heuristic and α-Expansion

Probably the best-known bound for obtaining solutions of the multiclass labeling
problem on graphs with pairwise terms is provided in the original “graph cut”
paper by Boykov et al. [8], and is based on the α-expansion method.

The α-expansion method provides a way to reduce multiclass labeling prob-
lems to a sequence of two-class problems, which can then be solved globally
optimal, for instance using graph cuts.

Denote by G = (V,E) the (undirected) graph representation of the problem,
where the energy for a labeling ` : V → I := {1, . . . , l} is

f(`) =
∑

x∈V

sx(`(x)) +
∑

e=(x1,x2)∈E

d(`(x1), `(x2)) (83)

for nonnegative sx : I → R>0 and metric d : I2 → R>0.
An early idea for generating integral solutions from the solution of the re-

laxed problem was provided by [22] in a multiterminal cut framework, which
corresponds to the case where d is the uniform metric. It uses an isolation heuris-
tic, which consists in computing l individual cuts (i.e. two-class segmentations),
where each label in turn is segmented against all others. The multiterminal cut
is then constructed as the union of the l − 1 best cuts. Using this approach, a
bound of ε = 1− 2/l was proven in [22] for the finite-dimensional problem (83).

The α-expansion method can be seen as a repeated, sequential application of
the steps in the isolation heuristic, extending it to general metrics. It proceeds
in a number of outer iterations, as shown in Alg. 1:

In each step, one label j is selected, and `j,V′ is constructed from `(k) so that
each vertex either keeps its current label or switches to label j. Thus, during one
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step the set of points which carry label j may only expand. Therefore the steps
are referred to as α-expansion moves , with α referring to the selected label j in
the original work [8]. The inner problem (84) is a two-class labeling problem,
and, under the assumptions on the discretization and on d, contains semi-metric
pairwise terms, and can thus be solved exactly using graph cut techniques.

The output `+ can be considered as a local minimum with respect to ex-
pansion moves, as there cannot be an expansion move starting from `+ that
decreases the energy. The authors then show the following proposition:

Proposition 2. [8, Thm. 6.1] Let `+ be a local minimum with respect to expan-
sion moves, and `∗ be a global minimizer of (83). Then

f(`+) 6 2cf(`∗), (85)

where

c :=
maxi 6=i′ d(i, i′)
mini 6=i′ d(i, i′)

> 1. (86)

From (85) we therefore obtain ε = 2c − 1 for the α-expansion method. The
principle of reducing multi-class problems to a sequence of two-class problems
such as (84) is also the basis for the α-β-swap technique from the same authors,
which can handle the case of semi-metric d and in practice often leads to a
smaller energy, but provides no bound similar to (85). A generalization can be
found in [49, 50], where the authors view the problem of finding the optimal
expansion step (84) as the decision between two solutions: identifying V ′ with
its characteristic function u′ := 1V ′ : V → {0, 1}, the expansion step becomes

u′ = arg min
u′:V →{0,1}

f
(
(1 − u′)`(k) + u′j

)
, (87)

This can be seen as a “binary fusion” between two candidate solutions: the
current iterate `(k) and the constant solution ` ≡ j. As these problems correspond
to two-class labeling, they can be solved globally optimal, e.g. using graph cuts.

4.2 Continuous Binary Fusion

The finite-dimensional approach (87) can be generalized to the spatially contin-
uous case by essentially replacing V with Ω. This was proposed in [65] in an
informal way, without specifying the actual function spaces and assumptions on
the functionals. In [54, 55], the authors argue that Prop. 2 similarly holds for
functionals of the form (2), with the separable (but anisotropic) regularizer

Ψ(z) =
l∑

j=1

‖Azj‖2, z ∈ Rd×l, (88)

for some A ∈ Rd×d. However, their proof seems to be insufficient in several
aspects. The authors do not specify the function spaces, and use a pointwise
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argument much as the vertex- and edge-wise argument used in Prop. 2. This
requires additional justification when dealing with BV functions, which are de-
fined only almost everywhere. Also, there are some technical problems regarding
the use of the classical definition for the interior and exterior of a set, which
affects well-definedness in connection with functionals on BV involving the total
variation.

Apart from these problems, it is nontrivial to show that the continuous ana-
logue to Alg. 1 actually terminates. This is not an issue in the finite-dimensional
setting: since there is only a finite number of configurations, there can only be a
finite number of iterations until the energy does not decrease anymore, and the
algorithm stops.

4.3 LP Relaxation with Derandomization

In [10], the authors consider an LP relaxation of the multiway cut and provide a
randomized approximation algorithm with ε = 1

2 − 1
l . In the multiclass labeling

setting, their formulation corresponds to the graph-based discretization (83) with
(locally weighted) uniform metric regularizer d(i, j) = 1{i 6=j}. As seen in the
previous chapter, for grid graphs this corresponds to Ψ = ‖ ∙ ‖1.

In order to cope with general metrics, [37] adapted a variant of the LP for-
mulation (Sect. 3.1), which raises the bound to ε = 1 for the uniform metric.
For the uniform metric, the LP relaxation has the form

miny,z

∑

x∈V

∑

j∈I

sx(j)yx,j +
∑

e∈E

weze (89)

s.t. yx,∙ ∈ Δl, x ∈ V, (90)

ze =
1
2

∑

j∈I

ze,j , (91)

ze,j > yx1,j − yx2,j , (x1, x2) ∈ E, (92)

ze,j > yx2,j − yx1,j , (x1, x2) ∈ E. (93)

The variables yx,j correspond to uj(x), i.e. semantically yx,j = 1 iff `(x) = j, and
the scalars we constitute edge weights to allow for non-homogeneous regularizers.
Without the slack variables, the LP amounts to

miny∈(Δl)n {
∑

x∈V

∑

j∈I

sx(j)yx,j +

1
2

∑

e=(x1,x2)∈E

we

∑

j∈I

|yx1,j − yx2,j |}. (94)

Assuming we ≡ 1, this is equivalent to a graph-based discretization of (83)
and closely resembles (13), which motivates to adapt the proof for the spatially
continuous setting.

For finite-dimensional problems, the bound of ε = 1 is proven in [37] by first
considering a randomized rounding method and then showing that it can be
derandomized in polynomial time.
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The proof strongly relies on the vertex/edge representation, and therefore
cannot be trivially transferred to the spatially continuous setting. In particular,
several steps directly involve the slack variables ze and ze,j , which do not have
a direct analogue in the continuous setting.

An interesting question is how to transfer the derandomization to the contin-
uous setting – they crucially depend on fixing single labels, which is not available
in a well-defined sense in the continuous setting. To our knowledge, there have
been no real advances in this direction.

4.4 Probabilistic Multi-Class Results

A first approximation result for the full spatially continuous model (2) was
proven in [47]. It relies on proving a generalized approximate coarea formula,

(1 + ε)f(u) >
∫

Γ

f(ūγ)dμ(γ). (95)

The right-hand side encompasses a parameter space Γ for a “rounding parame-
ter” γ with an associated probability distribution μ, and a parametrized rounding
method (u, γ) 7→ ūγ . With this notation, (95) can be interpreted as the expecta-
tion of the objective function applied to u after rounding according to a random
rounding parameter γ, i.e.,

(1 + ε)f(u) >
∫

Γ

f(ūγ)dμ(γ) = Eγf(ūγ). (96)

If such a relation is shown, it implies that for any minimizer u∗ of the relaxed
problem (13),

Eγf(ū∗
γ) 6 (1 + ε)f(u∗) 6 (1 + ε)f(u∗

E), (97)

holds, bounding the ratio between the objective of the rounded relaxed solution
and the optimal integral solution – in a probabilistic sense – by (1 + ε).

In [48] it is shown that if one chooses Γ as the space of sequences γ of pairs
γk = (ik, αk) with the uniform distribution, it is possible to construct such a
bound.

Given a sequence γ ∈ (I × [0, 1])N, the rounding step Rγ : u 7→ ūγ can be
recursively defined as

Rγ(u) := Rγ′

(
ei11{ui1>α1} + u1{ui16α1}

)
, (98)

where γ′ := (γ2, γ3, . . .).
Intuitively, the recursion “terminates” as soon as almost every point in Ω

has been assigned a “hard” label in E . More precisely, it can be shown that its
expectation Eγf(ūγ) is well-defined on BV(Ω,Δl) in the sense that for almost
every γ it generates ūγ ∈ BV(Ω, E).
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Then, assuming that there exists a lower bound λl for the integrand Ψ such
that

Ψ(z = (z1, . . . , zl)) >

λl
1
2

l∑

i=1

‖zi‖2 ∀z ∈ Rd×l,

l∑

i=1

zi = 0, (99)

and an upper bound λu < ∞ such that

Ψ(y(ei − ej)>) 6

λu ∀i, j ∈ {1, . . . , l}, y ∈ Rd, ‖y‖2 = 1, (100)

it is possible to show the following theorem:

Theorem 2. [47] Assume s ∈ L∞(Ω)l, s > 0. Furthermore, let Ψ : Rd×l → R>0

be positively homogeneous, convex and continuous, and u ∈ C. Assume that there
exist λl, λu such that the lower- and upper-boundedness conditions (99) and (100)
are satisfied. Then the method (98) generates an integral labeling ū ∈ CE almost
surely, and

Ef(ū) 6 2
λu

λl
f(u). (101)

The theorem shows that by randomly rounding a minimizer u∗ of the relaxed
problem (13), one obtains an integral solution ū∗ with a guaranteed bound

Ef (ū∗) 6 2
λu

λl
f(u∗

E) (102)

with respect to the optimal integral solution u∗
E . For the metric regularizer in

(5) with given metric d, it is possible to specialize the result to

2
λu

λl
= 2

maxi,j d(i, j)
mini 6=j d(i, j)

, (103)

parallelling the above-mentioned results for the finite-dimensional LP relaxation
and α-expansion methods.

One may ask the question if this bound, and equally the one in Prop. 2, is
actually relevant, i.e., if it the obtained solution is better than just assigning a
constant label to the whole image. To see why the latter method may perform
very bad in terms of the approximation factor, consider a problem where s(x) =
e − ei(x) for some function i : Ω → E that partitions the image domain into
l regions of non-zero area and finite perimeter, and d is the weighted uniform
distance d = δdu with δ (infinitesimally) small.

Setting u(x) = ei(x) yields an upper bound on the optimal energy that is
arbitrarily close to zero, while any constant labeling has an energy larger than
the area of the smallest region, minl∈E |i−1({l})|, and therefore much worse than
the factor of 2 achieved by (103). For the finite-dimensional case, one can find
examples where the bound (103) is tight, at least asymptotically for an infinite
number of labels [37]. However, in the continuous setting we are not aware of
such a result.
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Fig. 11. Top to bottom: Problems 1 − 10 of the test set. Top to bottom: Orig-
inal input; relaxed (fractional) solution; integral solutions obtained by deterministic
rounding; result of probabilistic rounding; result of α-expansion (for comparison). In
specially crafted situations, the probabilistic method may perform slightly worse (sec-
ond column) or better (third column) than the deterministic approaches. On real-world
data, results are very similar. In contrast to the deterministic approaches, the proba-
bilistic method provides true a priori optimality bounds.

4.5 Experimental Performance

In this section we show some prototypical examples of what can be expected
from the different rounding strategies. It is important to keep in mind that
for the discretized problem, analog bounds to those provided by Thm. 2 are
only valid if the discretization respects the coarea formula. However, for these
energies the original finite-dimensional proof [37] already applies. For the finite-
differences discretization, a comparison of the a posteriori bounds computed via
the primal-dual gap must be taken with care, since the gap is caused by the
relaxation as well as the discretization. However, unlike in the two-class case,
a comparison makes at least limited sense in the multiclass case, since a large
a posteriori bound suggests that is it not only caused by the discretization, and
that the underlying integral solution may be suboptimal due to the relaxation.
With this in mind, the observations in the following subsections should be seen
only as indicators of what results can be expected qualitatively.

A Priori and A Posteriori Bounds In order to evaluate the tightness of
the bound (102) in Thm. 2 in practice, we selected 10 prototypical multiclass
labeling problems with 3 − 16 labels each. For each we computed the relaxed
solution u∗ and the mean as well as the best objective of the rounded solution
ū∗ after 20 runs of the probabilistic method (98), see Fig. 11 for some exemplary
results. In order to compute the objectives with the sophisticated regularizer (5),
we used the commercial MOSEK solver with an accuracy of 10−8. The primal-
dual optimization approach provides an (approximate) a posteriori bound ε′, in
contrast to the theoretical a priori upper bound ε = 2λu/λl − 1. In practice,
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problem 1 2 3 4 5 6 7 8 9 10
# points 76800 14400 14400 129240 76800 86400 86400 76800 86400 110592
# labels 3 4 4 4 8 12 12 12 12 16
mean # iterations 7.27 7.9 8.05 10.79 31.85 49.1 49.4 49.4 49.7 66.1
a priori ε 1. 1. 1. 1. 1. 1. 1. 1. 1. 2.6332
a posteriori
- first-max 0.0007 0.0231 0.2360 0.0030 0.0099 0.0102 0.0090 0.0101 0.0183 0.0209
- prob. best 0.0010 0.0314 0.1073 0.0045 0.0177 0.0195 0.0174 0.0219 0.0309 0.0487
- prob. mean 0.0007 0.0231 0.0547 0.0029 0.0138 0.0152 0.0134 0.0155 0.0247 0.0292

Table 4. Number of pixels N , number of labels l, mean number of iterations k, pre-
dicted a priori bound ε = 2λu/λl − 1, a posteriori bounds for the different rounding
methods. The a posteriori bound for the probabilistic method is well below the worst-
case bound predicted by Thm. 2.

the a posteriori bound stayed well below the theoretical bound (Table 4), which
is consistent with the good practical performance of α-expansion, which has a
similar a priori bound.

Also note that the theoretical bounds do not directly apply to the discretized
problem, and cannot be directly used as an indicator for the quality of the result,
see Sect. 3. However, a large energy increase indicates that the increase might at
least partially be caused by the relaxation, rather than the discretization, and
therefore the finite-dimensional solution likely does not represent the spatially
continuous solution well.

Deterministic and Probabilistic Methods Compared to a simple determin-
istic rounding to the closest unit vector, the probabilistic method (98) usually
leads to a slightly larger energy increase (Table. 4).

However, for problems that are inherently difficult for convex relaxation ap-
proaches, we found that the probabilistic approach often generated better so-
lutions. An example is the “inverse triple junction” inpainting problem (second
row in Fig. 11), which has at least 3 distinct integral solutions. A variant of this
problem, formulated on graphs, was used as a worst case to show the tightness
of the LP relaxation bound in [37].

4.6 Future Directions

From these experiments it becomes clear that the a priori bounds are generally
outperformed by a large margin in practice. One possible strategy to achieve even
tighter bounds is to adapt further arguments from [37]: For general metrics, one
may consider a variant of the linear program that incorporates an approxima-
tion of the metric by r-hierarchically well-separated tree metrics . Such metrics
are shortest-path metrics generated by weighted graphs with tree structure [4,
Def. 6], with the additional property that the edge weights decrease by at least
a factor of r on any path from the root to a leaf. For such metrics with r > 2,
the authors of [37] provide a derandomized algorithm with ε = 1 + 4/(r − 2).

A probabilistic result [4, Thm. 9], later derandomized in [18], shows that for
any metric d, an r-hierarchically well-separated tree metric approximation dr
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can be constructed such that

d(i, j) 6 dr(i, j) 6 αd(i, j), (104)

with a bound of O(r log l log log l) for the approximation quality α. If the re-
quirement of well-separability is dropped, a tight bound of O(log l) holds [27,
Thm. 1].

Using these techniques, a bound close to the above-mentioned ε = 1+4/(r−2)
should be feasible for the spatially continuous case. Another open question is how
to construct worst-case examples in order to prove tightness of the bounds.

5 Numerical Speedup Through Metric Reduction

In order to solve nonsmooth convex problems such as the relaxed problem (13),
recently first-order primal-dual methods have gained a lot of popularity (see [26]
for an overview), since they

– are relatively straightforward to implement and well-analyzed,
– allow to exploit sparse problem structure in a particularly straightforward

way,
– can also be formulated in general Hilbert spaces [19],
– provide a good stopping-criterium in the form of the primal-dual gap,
– involve only basic operations that can be easily parallelized due to their local

nature, and are therefore amenable to the massive parallelization available
on the upcoming GPU platforms [66], which is much more difficult for the
combinatorial graph cut-based methods [32, 25].

While asymptotically they usually do not guarantee linear convergence, they
are often very fast for the moderate accuracy required in image processing even
when compared to highly optimized commercial interior-point solvers (Fig. 12
and 13; an accuracy of 10−4 is usually sufficient for typical computer vision
applications).

Primal-dual methods usually start from a saddle-point representation of the
problem,

min
u∈C

max
v∈D

{〈u, s〉 + 〈Du, v〉 − 〈b, v〉} , (105)

and generate a sequence of primal-dual iterates (uk, vk) based on evaluation of
the gradient operator D and projections on the sets C and D. Unfortunately, for
the tight regularizer (5), the latter is difficult, since there is no known way to
project onto the set D in closed form.

Such projections are then either computed approximately [13], or they are
avoided by introducing a suitable number of auxiliary variables [44]. In both
cases, the computational effort is at least proportional to the number of con-
straints in Dloc as defined in (5):

Dd
loc = {v|‖vi − vj‖2 6 d(i, j) ∀i 6= j,

∑

k

vk = 0} . (106)
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Fig. 12. Performance of first-order and interior-point methods for increasing problem
size (number of pixels) n. Shown is the mean time in seconds over 10 problems with
different noise, with error bars at 2σ. For a moderate accuracy of 10−4, the primal-
dual methods (shown as FPD and DR) outperform both the non-commercial SDPT3
and the commercial MOSEK interior-point solvers, which additionally exceeded the
available memory at image sizes of 192 × 192 and 384 × 384, respectively.
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Fig. 13. Performance of first-order and interior-point methods for an accuracy of 10−6,
cf. Fig. 12 (note the different scales). For higher requested accuracy, the better asymp-
totical convergence rate of the interior-point methods becomes advantageous. However,
the first-order methods still outperform the SDPT3 solver.
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Fig. 14. High label counts are often required when dealing with quantized multi-
dimensional properties such as velocity vectors in optical flow estimation. Each point
represents a label associated with a combination of velocities in x- and y-direction,
therefore the number of labels grows quadratically with the accuracy of the quantiza-
tion.

For general metrics the number of constraints scales quadratically with the
number of labels, which renders the approach unsuitable for larger labels counts.
Unfortunately such high label counts occur naturally in problems where the
labels correspond to a quantized multi-dimensional quantity, such as the two-
or three-dimensional velocity vectors in optical flow estimation (Fig. 14).

There have been some suggestions on how to overcome this problem: In
[31] and [64], the authors show that for applications where the labels represent
vector-valued quantities with n steps in each component, it is possible to work
with 2n labels instead of n2, reducing the number of constraints from O(n4) to
O(n2). However, this requires the regularizer to be separable in the components,
and slightly weakens the relaxation. Another variant is [63], where the authors
consider the special case of “cyclic” total variation for angular values, and show
how to reduce the number of constraints from O(n2) to O(n).

Since both of these settings are quite restricted, it is an interesting question
whether one can apply such complexity reduction to the general metric regu-
larizer (106). In the following, we outline a generic approach for reducing the
number of constraints that covers these special cases and also applies to many
other interesting metrics.

5.1 Reducing Metrics

We denote

Dij = {v|‖vi − vj‖2 6 d(i, j)}, (107)

then
Dd

loc =
⋂

i 6=j

Dij ∩
{

v|
∑

k

vk = 0
}

. (108)

As a motivation, assume we can find (i, j, k) with pairwise different i, j, k such
that

d(i, j)>d(i, k) + d(k, j). (109)
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In fact, since d is a metric and satisfies the triangle inequality, this implies
equality. Then

‖vi − vj‖ 6 ‖vi − vk‖ + ‖vk − vj‖ (110)

6 d(i, k) + d(k, j) 6 d(i, j). (111)

Therefore, if we can find such (i, j, k) satisfying (109), then (Dik ∩ Dkj) ⊆ Dij ,
and removing the constraint for (i, j) does not change Dd

loc.
This raises the question in which order one should continue removing con-

straints. In the following we will show that the order is actually irrelevant, and
that it suffices to check condition (109) on the original metric only.

In order to simplify notation, instead of metrics we consider mappings m
that may assume the value +∞:

m ∈ M := {m : {1, . . . , l}2 → R>0 ∪ {+∞},

m(i, j) > 0 ∀i 6= j}. (112)

Such mappings do not have to satisfy the triangle inequality, but it is still possible
to define the associated dual constraint set Dm

loc analogously to (5). A value of
m(i, j) = +∞ indicates that the corresponding constraint may just be skipped.
Therefore the goal is to find, for a given metric d, a mapping m with as few
finite values as possible such that Dm

loc = Dd
loc.

With each m ∈ M we associate the complete directed graph Gm with nodes
{1, . . . , l} and edge weights m(i, j). We denote its shortest-path metric by m̄,
i.e., m̄(i, j) is the length of the shortest path from i to j in the graph associated
with m. Note that m = m̄ in case m is a metric due to the triangle inequality.

Two such mappings induce the same dual constraint set if their hulls coincide:

Proposition 3. Assume m,m′ ∈ M satisfy m̄ = m̄′. Then, with the definition
(5) for Dloc,

Dm
loc = Dm′

loc . (113)

Proof. See appendix. ut

A mapping m is said to represent the original metric d if m̄ = d. We now
show that it is possible to “remove” a pair (i, j) satisfying (109) from such an m
by setting it to +∞, so that the modified mapping still represents the original
metric d.

Proposition 4. Let d be a metric and m ∈ M such that m represents d, i.e.,
m̄ = d. Assume there exist pairwise different indices i, j, k ∈ {1, . . . , l} such that

d(i, j) > d(i, k) + d(k, j), (114)

and define m′ ∈ M by

m′(i′, j′) :=

{
+∞, (i′, j′) = (i, j)
m(i′, j′), otherwise.

(115)

Then m′ also represents d:
m̄′ = d. (116)
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Proof. See appendix. ut

These observations suggest a way of removing constraints from the constraint
set Dd

loc:

Proposition 5. Let d be a metric. Define

R := {(i, j) ∈ {1, . . . , l}|i 6= j, (117)

∀k ∈ {1, . . . , l} \ {i, j} : d(i, j) < d(i, k) + d(k, j)}.

Then

Dd
loc =

⋂

(i,j)∈R

Dij ∩
{

v|
∑

k

vk = 0
}

. (118)

Proof. See appendix. ut

Prop. 5 provides a straightforward way of eliminating exactly all redundant
constraints by checking condition (117), leaving only a “skeleton” of the original
metric. This process requires O(l3) but can be performed in a precomputation
step if the metric is known beforehand.

5.2 Experimental Results

We provide here several examples of metrics and their reduced form. The per-
formance is quantified by the number of constraints remaining in the dual con-
straint set. In conjunction with the FPD primal-dual method we observed that
the runtime is dominated by the projections on Dd

loc, and is therefore almost
proportional to the number of constraints. Therefore the number of remaining
constraints provides a good indicator for the speed-up that can be expected.

The first thing to notice is that for the well-known uniform (Potts) metric,
d(i, j) = 1{i 6=j}, the method does not provide any reduction (Fig. 15). However,
this is to be expected since the metric does not contain any “linear” structure.

In contrast, for the linear metric, d(i, j) = |i− j|, we observe a full reduction
from l(l − 1)/2 to (l − 1) constraints, effectively reducing the complexity from
O(l2) to O(l) (Fig. 16).

The linear metric is a special case of the class of tree metrics, i.e., shortest-
path metrics on tree graphs (Fig. 17). Any such metric can be fully reduced to
l − 1 constraints, which is the minimal number required if d is not allowed to
assume +∞. This makes the class of tree metrics very appealing, in particular
in the light of the comments in Sect. 4.6.

The most straightforward non-tree metric is the circular metric, d(i, j) =
min{|i−j|, l−|i−j|}, which describes the geodesic distance on a circle (Fig. 18).
This metric was proposed in [63] as a regularizer for angular data such as ori-
entation. It is interesting to see that the required constraints are exactly the
same as for the linear metric, with one additional constraint “connecting” labels
1 and l. This directly relates to the simplified representation in [63], but the
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experiments shows that it can be derived in a fully automatic way, reducing the
number of constraints from l(l − 1)/2 to l.

In applications where there may be sharp contrasts between objects, such as
depth from stereo, the truncated linear metric, d(i, j) = min{|i − j|, c}, is often
useful, since it linearly penalizes small variations but does not overly penalize
large jumps (Fig. 16). As a hybrid between the linear (c = l) and Potts metric
(c = 0), the reduction lies in between, depending on the choice of c.

In order the evaluate the method on unstructured graphs, we generated a
graph by randomly assigning a weight between 1 and 5 to 60% of the edges and
setting all other edge weights to +∞ (Fig. 20). The method correctly recovers
a subset of the original graph and reduces the number of constraints from 66 to
26.

A very interesting application is the reduction of metrics arising from the
quantization of vector-valued data, such as optical flow vectors. We denote by n
the number of quantization steps per dimension. For two-dimensional data, this
results in l = n2 and n4 constraints, rendering the approach impractical already
for very small n.

In such cases the regularizer often is separable, i.e., d((i1, i2), (j1, j2)) =
d1(i1, j1)+d2(i2, j2). For the linear metric d1(i, j) = d2(i, j) = |i− j| this results
in a reduction from n2(n2−1)/2 to 2n(n−1), i.e., from O(n4) to O(n2) (Fig. 21).

But even for the case of the sum of two uniform metrics, d1(i, j) = d2(i, j) =
1{i 6=j}, each of one is not reducible as seen previously in Fig. 15, a certain
reduction can be obtained (Fig. 22): the number of constraints reduces from
n2(n2 − 1)/2 to 2n2(n − 1)/2, i.e, from O(n4) to O(n3).

6 Integral or Fractional Models?

The experiments in the previous sections, in particular Sect. 3 lead to the conclu-
sion that in order to obtain the visually best results, it is better to minimize over
the set of relaxed labelings using finite differences, and threshold if necessary,
than to solve a combinatorial problem directly. In this section we will discuss
several aspects of this conclusion.

6.1 Point- and Region-Based Interpretation

A fundamental decision implied when using combinatorial methods such as graph
cuts is that the result of a labeling method should consist of a vector of inte-
gral labels. This is a consistent choice at first glance, but it immediately brings
forward the question of the semantics of such a solution, i.e. how the discretiza-
tion reflects properties of the optimal spatially continuous labeling u∗. When
deriving graph-based pairwise energies, a strong focus lies on the correspon-
dence between label variables and points in the image domain: the label `h(xī)
denotes in which of the class regions Ω1, . . . , Ωl the point xī is contained . This
is clearly a combinatorial decision, and does not allow any intermediate values.
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Fig. 15. Metric reduction for the uniform
metric, d(i, j) = 1{i 6=j}. In this case no
reduction is possible, as the metric does
not contain any linear structure.
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Fig. 16. Metric reduction for the linear
metric, d(i, j) = |i − j|. The linear struc-
ture of the metric can be fully exploited,
yielding a reduction from O(l2) to O(l)
constraints.
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Fig. 17. Shortest-path metrics on trees
are special in that they can be fully re-
duced to the minimal number of (l − 1)
constraints, a reduction from O(l2) to
O(l).
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Fig. 18. The circular metric, d(i, j) =
min{|i − j|, l − |i − j|}. Such metrics are
useful for regularizing angular/directional
data, and also allow a full reduction from
l(l− 1)/2 to l constraints. The constraints
are similar to the ones proposed in [63],
but can be recovered in a fully automatic
way.
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Fig. 19. Reduction for the truncated lin-
ear metric d(i, j) = min{|i − j|, c} with
c = 3. Depending on the parameter c,
the number of constraints varies from O(l)
(c = l, linear metric) to O(l2) (c = 0, uni-
form metric).

Fig. 20. Metric reduction of a shortest-
path metric on an unstructured random
graph. Since no particular structure is as-
sumed a priori, the reduction method can
be applied to any metric in a black-box
fashion, and correctly identifies a subset
of the original graph in order to form the
constraint set.

O(n4) O(n2)

Fig. 21. Metric reduction on problems
with vector-valued quantities (cf. Fig. 14),
where each direction is quantized using n
steps. The separable structure of the met-
ric d((i1, i2), (j1, j2)) = |i1−j1|+|i2−j2| is
automatically fully exploited and permits
a perfect reduction from O(n4) to O(n2)
constraints.

O(n4) O(n3)

Fig. 22. In contrast to the pure uniform
metric (Fig. 15), for the separable uniform
regularizer d((i1, i2), (j1, j2)) = 1{i1 6=j1} +
1{i2 6=j2}, a reduction from O(n4) to O(n3)
constraints is possible and automatically
identified.
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The derivations for the edge weights etc. all depend on this assumption: cutting
an edge is semantically equivalent to separating two points .

Such a hard pointwise decision is fully justified when dealing with e.g. network
problems, where the nodes of the graph correspond to finite entities in the the
real world, such as factory locations in production planning problems. However,
in a sense it neglects the origin of imaging data, which usually comes from
cameras or sensors that average the continuous input over a number of pixel
areas , i.e. regions with nonzero area in the image plane. In contrast to points, and
even in perfect camera models, pixel values always accumulate some statistics
from their respective rectangular region. The same holds for higher-dimensional
data such as voxels describing a section of the real world.

If one therefore associates each label `h(xī) with a pixel , the interpretation
changes in the sense that each label now represents all labels in the rectangular
region associated with the pixel containing xī. In Thm. 1 this is quantified by
assuming that the piecewise constant function ũh associated with some uh should
approximate the optimal continuous function u in the L1 sense, similarly for s̃h

and sh.
Using this interpretation, the decision to only allow integral labels becomes

questionable. In fact, enforcing integral values then corresponds to approximat-
ing the true function u using integer-valued functions that are piecewise constant
on the region associated to each pixel. However, such integral approximations
can only have axis-parallel edges. If the energy respects this structure, as is the
case for the 4-neighborhood LP relaxation scheme, the corresponding artifacts
occur.

Therefore, for the region-(pixel-)based interpretation, a more adequate choice
is to allow fractional values for uh in order to better approximate the true con-
tinuous u using the piecewise constant ũh. This interpretation is very natural
when dealing with images: Assume for a moment that an optimal two-class la-
beling u∗ : Ω → {0, 1} of some real-world image is known, and that we are
given the task of finding a good approximation uh of the labeling on a grid (we
represent e1 and e2 with the scalar values {0, 1} as in the two-class continuous
cut). Possibly the most natural approach, and what is intuitively expected by
humans, is to simulate the effect of a camera, i.e. to formally paint the scene
in black and white according to the true labeling u∗ and to average the values
within the region for each pixel. This inevitably leads to fractional values if the
pixel region is intersected by an interface.

The central message is that such fractional values are not introduced by
a relaxation process, but by honoring the fact that each of the values

uh
(
xī
)

correspond to a whole region of labels. In other words, the frac-

tional values occur only as an effect of approximating the true continuous
solution on a finite grid.

Therefore we argue that the region-based interpretation should be preferred.
In fact, an integral labeling is rarely ever actually required by subsequent image
processing steps in the sense that they cannot be reformulated to account for the
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region interpretation. Often, a certain smoothness at the boundaries is actually
desirable, as in the case of segmentation for image manipulation.

6.2 Obtaining Integral Solutions

Nevertheless, let us assume that the user has a valid reason for restricting the
solution to hard labels, and consider what would be an optimal segmentation ūh :
Rn → {0, 1} if one had perfect knowledge about the optimal true segmentation
u∗. Since with perfect knowledge there is no reason to infer any structure that
is not contained in the known segmentation, again the most reasonable choice is
to find an (integral) ūh that best approximates the continuous segmentation,

ūh = arg min
u′h:Ωh→{0,1}

‖u∗ − ũ′h‖L1 , (119)

or a similar formulation with a different norm. For the usual L1-distance, this
simply corresponds to setting ūh(xī) = 1 if more than half of the labels corre-
sponding to the ī-th pixel have label 1. Note that this is a purely local decision,
since it only depends on labels for points inside the region associated with the
pixel containing the point xī.

In reality, u∗ cannot be represented in finite memory and is therefore only
available as a finite-dimensional fractional approximation uh,∗ obtained by min-
imizing a functional fh. The best guess to find ūh is then to approximate uh,∗,
i.e.

ūh,∗ = arg min
u′h:Ωh→{0,1}

‖uh,∗ − ũ′h‖L1 , (120)

uh,∗ = arg min
uh:Ωh→[0,1]

fh(uh). (121)

This amounts exactly to rounding the fractional values of uh,∗ to integral values,
and again is a purely local operation. The rounding is a direct consequence of
the region-based interpretation when combined with the requirement for integral
solutions.

A key point is that this is not the same as minimizing fh over the set of
integral uh, i.e. solving the combinatorial problem

ūh = arg min
uh:Ωh→{0,1}

fh(uh). (122)

For an illustration, see Fig. 23. This provides an explanation for the results
observed in the experimental section:

1. It does not make sense to compute global integral minimizers of energies that
are formulated with a region-based interpretation in mind. The proper way
to generate integral approximations to the best continuous segmentation is
to first compute the best fractional minimizer and then (locally) round.
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Fig. 23. Approximation of the optimal segmentation (left) by solving the discretized
relaxed problem and rounding (center) vs. minimizing the same energy as a combina-
torial problem. The relaxed approach respects the origin of the data from a continuous
world, and returns an approximation to the best fractional approximation of the con-
tinuous segmentation in terms of a fractional solution, from which an integral approx-
imation can be recovered. By allowing fractional values the continuous functional can
be approximated fairly well. In contrast, for reasonably large neighborhoods, combina-
torial approaches correspond to a crude approximation of the true functional, which
introduces undesired minima (right).
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2. Analogously, it is not reasonable to compare the energy of a rounded frac-
tional solution to the energy of some other solution obtained via a combina-
torial optimization method of the same energy. In particular, the rounding
step must not be seen a way to approximate integral minimizers.

If one persists on using a combinatorial optimization method, the proper way
would be to formulate a combinatorial energy fh

c whose integral minimizers
approximate u∗ as well as possible, and solve

ūh,∗
c = arg min

uh:Ωh→{0,1}
fh

c (uh). (123)

The graph cut approach can be seen as an implementation of this idea (123),
while the relaxed approach considered in this work conforms to (121). This
constitutes a case where, if one actually requires integral labelings, it is much
easier to construct relaxed energies fh such that the rounded minimizer ūh from
(121) is a good approximation of u∗, than it is to formulate a combinatorial
energy fh

c such that the same holds for its integral minimizer ūh,∗
c .

We attribute this to the fact that fh
c has much less degrees of freedom; in

fact there is only a finite number of choices for fh
c . In contrast, fh contains much

more information, since it describes a function defined on a continuum of values.
In a sense, adding a single term that involves the Euclidean norm ‖ ∙ ‖2 to fh

conveys as much information as adding an infinite number of pairwise terms to
fh

c , cf. (52).
With this in mind, (121) can be seen as a convenient way of formulating

combinatorial optimization problems involving an otherwise too complicated
combinatorial objective fh

c , that facilitates a very compact representation by
introducing an intermediate relaxed problem.

6.3 Multi-Class Case

Note that the rounding process is not connected in any way to uncertainties
related to the formulation of the minimization problem, but rather is the exact
step to find the best integral approximation to a fractional image. Allowing
intermediate might seem to be related to the process of switching from MAP to
marginal estimation in graphical models, however this connection is deceiving:
In the latter, marginal probabilities correspond to the uncertainty of choosing
one specific label. In contrast, in our framework the intermediate values are
required to accommodate for the infinitely many points within the pixel that
should receive a label. Pixel labels are not the same as point labels, but in a
sense statistics about the labels of all points associated with the pixel.

However, this view slightly changes for the multi-class problem where u may
already assume fractional values due to the relaxation step. Here fractional values
can additionally be caused by the relaxation, and it is important to develop
relaxations that are as tight as possible. However, from the considerations above
we see that even if the relaxations is perfectly tight, as in the two-class case,
fractional labelings are still useful in order to better approximate the spatially
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continuous solution, and provide the necessary freedom to precisely discretize
the original objective.

Appendix

Proof (Prop. 3). Let v ∈ Dm
loc and i 6= j. Denote a shortest path in Gm from i

to j by (k1 = i, k2, . . . , kn−1, kn = j) for some n > 2. Then, due to the triangle
inequality of the norm,

‖vi − vj‖2 6 ‖vk1 − vk2‖2 + . . . + ‖vkn−1 − vkn‖2. (124)

Since v ∈ Dm
loc, the terms on the right can be bounded,

‖vi − vj‖2 6 m(k1, k2) + . . . + m(kn−1, kn). (125)

By definition, the sum equals m̄(i, j) and therefore by assumption m̄′(i, j), thus

‖vi − vj‖2 6 m̄(i, j) = m̄′(i, j) 6 m′(i, j). (126)

Consequently v ∈ Dm′

loc, and, since v was arbitrary, Dm
loc ⊆ Dm′

loc. By symmetry
the reverse inclusion holds as well, and therefore equality. ut

Proof (Prop. 4). Since d is a metric and thus satisfies the triangle inequality,
(114) is equivalent to

d(i, k) + d(k, j) = d(i, j). (127)

Since d is the shortest-path metric of m, eq. (127) states that there exists a
shortest path from i to j in Gm passing through k. This path consists of at least
two edges which both have positive weight by the definition of M. Therefore the
path cannot contain the edge (i, j), since m(i, j) > d(i, j) which would contradict
(127).

This means that the path is also contained in Gm′
. By construction of m′ it

must then also be a shortest path from i to j in m′, which shows that m̄′(i, j) =
m̄(i, j). Since m′(i′, j′) = m(i′, j′) for all (i′, j′) 6= (i, j), this immediately implies
m̄′ = m̄ and therefore the assertion. ut

Proof (Prop. 5). Define

m(i, j) :=

{
+∞, ∃k 6= i, j : d(i, j) > d(i, k) + d(k, j)
d(i, j), otherwise.

An iterative application of Prop. 4 shows that m̄ = d. Prop. 3 then states that
their associated dual constraint sets coincide,

Dm
loc = Dd

loc. (128)

Since
⋂

(i,j)∈R Dij = Dm
loc by construction, this concludes the proof. ut
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age labeling by simplex-constrained total variation. In: Scale Space and Var. Meth.,
LNCS, vol. 5567, pp. 150–162 (2009)



Discrete and Continuous Models for Partitioning Problems 53
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