Sublabel-Accurate Relaxation of Nonconvex Energies

Thomas Möllenhoff^{1,*}

Emanuel Laude^{1,*}

Michael Moeller 1

Jan Lellmann²

Daniel Cremers¹

*contributed equally

¹TU Munich

²University of Lübeck

Variational Approaches in Computer Vision

image denoising

stereo matching

optical flow

Variational Approaches in Computer Vision

image denoising

stereo matching

optical flow

Minimize energies of the form

$$\min_{u:\Omega \to \Gamma} \int_{\Omega} \rho(x, u(x)) + \lambda \cdot |\nabla u(x)| \, \mathrm{d}x$$

Variational Approaches in Computer Vision

image denoising

stereo matching

optical flow

Minimize energies of the form

$$\min_{u:\Omega\to\Gamma} \int_{\Omega} \rho(x,u(x)) + \lambda \cdot |\nabla u(x)| \, \mathrm{d}x$$

Challenges:

- Nonconvex data term $\rho: \Omega \times \Gamma \to \mathbb{R}$
- Continuous range $\Gamma = [\gamma_{\min}, \gamma_{\max}] \subset \mathbb{R}$

Thomas Möllenhoff (TU Munich)

Discrete Multilabel Optimization [Ishikawa, TPAMI '03]

- + optimality guarantees
- discretization of $\Omega \Rightarrow$ grid bias
- discretization of $\Gamma \Rightarrow$ label bias

Thomas Möllenhoff (TU Munich)

Continuous Lifting [Pock et al., ECCV '08]

- + optimality guarantees
- + isotropic regularization \Rightarrow no grid bias
- discretization of $\Gamma \Rightarrow$ label bias

Thomas Möllenhoff (TU Munich)

traditional representation 2 labels, $0.07~\mathrm{GB}$

Thomas Möllenhoff (TU Munich)

traditional representation 4 labels, $0.14~\mathrm{GB}$

Thomas Möllenhoff (TU Munich)

traditional representation 8 labels, $0.27~\mathrm{GB}$

Thomas Möllenhoff (TU Munich)

traditional representation 16 labels, $0.54~\mathrm{GB}$

Thomas Möllenhoff (TU Munich)

traditional representation 32 labels, 1.09 GB

Thomas Möllenhoff (TU Munich)

traditional representation 64 labels, 2.17 GB

traditional representation 128 labels, 4.34 GB

Thomas Möllenhoff (TU Munich)

traditional representation 128 labels, 4.34 GB

sublabel representation 8 labels, 0.57 GB

traditional representation 128 labels, 4.34 GB

sublabel representation 8 labels, 0.57 GB

MRFs with continuous state spaces / continuous graphical models [Zach, Kohli, ECCV '12], [Fix, Agarwal, ECCV '14]

MRFs with continuous state spaces / continuous graphical models [Zach, Kohli, ECCV '12], [Fix, Agarwal, ECCV '14]

Partially sublabel-accurate spatially continuous multilabeling [Lellmann et al. ICCV '13]

MRFs with continuous state spaces / continuous graphical models [Zach, Kohli, ECCV '12], [Fix, Agarwal, ECCV '14]

Partially sublabel-accurate spatially continuous multilabeling [Lellmann et al. ICCV '13]

Key contributions of this work:

+ First spatially continuous fully sublabel-accurate formulation

MRFs with continuous state spaces / continuous graphical models [Zach, Kohli, ECCV '12], [Fix, Agarwal, ECCV '14]

Partially sublabel-accurate spatially continuous multilabeling [Lellmann et al. ICCV '13]

Key contributions of this work:

- + First spatially continuous fully sublabel-accurate formulation
- + Provably tightest local convex relaxation

MRFs with continuous state spaces / continuous graphical models [Zach, Kohli, ECCV '12], [Fix, Agarwal, ECCV '14]

Partially sublabel-accurate spatially continuous multilabeling [Lellmann et al. ICCV '13]

Key contributions of this work:

- + First spatially continuous fully sublabel-accurate formulation
- + Provably tightest local convex relaxation
- + Unification of lifting and direct convex optimization

traditional relaxation

 Traditional multilabeling methods [Ishikawa, TPAMI '03], [Pock et al., ECCV '08] specify the cost only at the labels

traditional relaxation

- Traditional multilabeling methods [Ishikawa, TPAMI '03], [Pock et al., ECCV '08] specify the cost only at the labels
- Leads to a linear relaxation, easy to optimize

- Traditional multilabeling methods [Ishikawa, TPAMI '03], [Pock et al., ECCV '08] specify the cost only at the labels
- Leads to a linear relaxation, easy to optimize
Piecewise Linear versus Piecewise Convex Lifting

- Traditional multilabeling methods [Ishikawa, TPAMI '03], [Pock et al., ECCV '08] specify the cost only at the labels
- Leads to a linear relaxation, easy to optimize
- We assign meaningful cost for solutions between the labels

Piecewise Linear versus Piecewise Convex Lifting

- Traditional multilabeling methods [Ishikawa, TPAMI '03], [Pock et al., ECCV '08] specify the cost only at the labels
- Leads to a linear relaxation, easy to optimize
- We assign meaningful cost for solutions between the labels
- The proposed relaxation is nonlinear, but still convex!

$$\boldsymbol{\rho}(\boldsymbol{u}) = \begin{cases} \rho(\gamma_i + \alpha(\gamma_{i+1} - \gamma_i)), & \text{if } \boldsymbol{u} = \mathbf{1}_{i-1} + \alpha \left(\mathbf{1}_i - \mathbf{1}_{i-1}\right), \\ \infty, & \text{otherwise.} \end{cases}$$

$$\boldsymbol{\rho}(\boldsymbol{u}) = \begin{cases} \rho(\gamma_i + \alpha(\gamma_{i+1} - \gamma_i)), & \text{if } \boldsymbol{u} = \mathbf{1}_{i-1} + \alpha \left(\mathbf{1}_i - \mathbf{1}_{i-1}\right), \\ \infty, & \text{otherwise.} \end{cases}$$

Proposition: The tightest convex extension is given by

$$\boldsymbol{\rho}^{**}(\boldsymbol{u}) = \sup_{\boldsymbol{v}\in\mathcal{C}} \left\langle \begin{bmatrix} \boldsymbol{u} & -1 \end{bmatrix}^\mathsf{T}, \boldsymbol{v} \right\rangle$$

Thomas Möllenhoff (TU Munich)

$$\boldsymbol{\rho}(\boldsymbol{u}) = \begin{cases} \rho(\gamma_i + \alpha(\gamma_{i+1} - \gamma_i)), & \text{if } \boldsymbol{u} = \mathbf{1}_{i-1} + \alpha \left(\mathbf{1}_i - \mathbf{1}_{i-1}\right), \\ \infty, & \text{otherwise.} \end{cases}$$

Proposition: The tightest convex extension is given by

$$\boldsymbol{\rho}^{**}(\boldsymbol{u}) = \sup_{\boldsymbol{v} \in \mathcal{C}} \left\langle \begin{bmatrix} \boldsymbol{u} & -1 \end{bmatrix}^{\mathsf{T}}, \boldsymbol{v} \right\rangle, \ \mathcal{C} = \left\{ \boldsymbol{v} \in \mathbb{R}^{L} \mid A_{i} \boldsymbol{v} \in \mathsf{epi}\left(\rho_{i}^{*}\right), \forall i \right\}$$

Thomas Möllenhoff (TU Munich)

$$\boldsymbol{\rho}(\boldsymbol{u}) = \begin{cases} \rho(\gamma_i + \alpha(\gamma_{i+1} - \gamma_i)), & \text{if } \boldsymbol{u} = \mathbf{1}_{i-1} + \alpha \left(\mathbf{1}_i - \mathbf{1}_{i-1}\right), \\ \infty, & \text{otherwise.} \end{cases}$$

Proposition: The tightest convex extension is given by

$$\boldsymbol{\rho}^{**}(\boldsymbol{u}) = \sup_{\boldsymbol{v} \in \mathcal{C}} \left\langle \begin{bmatrix} \boldsymbol{u} & -1 \end{bmatrix}^{\mathsf{T}}, \boldsymbol{v} \right\rangle, \ \mathcal{C} = \left\{ \boldsymbol{v} \in \mathbb{R}^{L} \mid A_{i} \boldsymbol{v} \in \mathsf{epi}\left(\rho_{i}^{*}\right), \forall i \right\}$$

Thomas Möllenhoff (TU Munich)

Numerical Optimization

Proposition: Tight local convex extension for lifted regularizer is

$$\int_{\Omega} |\nabla u| \mathrm{d}x \leftrightarrow \sup_{\mathbf{p}: \Omega \to \mathcal{K}} \langle \mathbf{u}, \mathrm{Div} \, \mathbf{p} \rangle, \ \mathcal{K} = \{ \mathbf{p} \mid \|\mathbf{p}_i\| \leq \gamma_{i+1} - \gamma_i, \forall i \}$$

Numerical Optimization

Proposition: Tight local convex extension for lifted regularizer is

$$\int_{\Omega} |\nabla u| \mathrm{d}x \leftrightarrow \sup_{\mathbf{p}: \Omega \to \mathcal{K}} \langle \mathbf{u}, \mathrm{Div} \, \mathbf{p} \rangle, \ \mathcal{K} = \{ \mathbf{p} \mid \|\mathbf{p}_i\| \leq \gamma_{i+1} - \gamma_i, \forall i \}$$

Leads to convex-concave saddle-point problem

$$\min_{\mathbf{u}:\Omega \to \mathbb{R}^{L-1}} \max_{\substack{\mathbf{v}:\Omega \to \mathcal{C} \\ \mathbf{p}:\Omega \to \mathcal{K}}} \langle \mathbf{u}, \operatorname{Div} \mathbf{p} \rangle + \left\langle \begin{bmatrix} u & -1 \end{bmatrix}^{\mathsf{T}}, v \right\rangle$$

Numerical Optimization

Proposition: Tight local convex extension for lifted regularizer is

$$\int_{\Omega} |\nabla u| \mathrm{d}x \leftrightarrow \sup_{\mathbf{p}: \Omega \to \mathcal{K}} \langle \mathbf{u}, \mathrm{Div} \, \mathbf{p} \rangle, \ \mathcal{K} = \{ \mathbf{p} \mid \|\mathbf{p}_i\| \leq \gamma_{i+1} - \gamma_i, \forall i \}$$

Leads to convex-concave saddle-point problem

$$\min_{\mathbf{u}:\Omega \to \mathbb{R}^{L-1}} \max_{\substack{\mathbf{v}:\Omega \to \mathcal{C} \\ \mathbf{p}:\Omega \to \mathcal{K}}} \langle \mathbf{u}, \mathrm{Div}\, \mathbf{p} \rangle + \left\langle \begin{bmatrix} u & -1 \end{bmatrix}^\mathsf{T}, \boldsymbol{v} \right\rangle$$

 Solved on GPU using a first-order primal-dual algorithm [Pock, Cremers, Bischof, Chambolle, ICCV '09]

Thomas Möllenhoff (TU Munich)

Convex Case: $\rho(x, u(x)) = (u(x) - f(x))^2$

direct, no labels 0.6s, 11.78 MB

Convex Case: $\rho(x, u(x)) = (u(x) - f(x))^2$

direct, no labels 0.6s, 11.78 MB

sublabel, 2 labels, 1s, 27 MB

Convex Case: $\rho(x, u(x)) = (u(x) - f(x))^2$

direct, no labels 0.6s, 11.78 MB

sublabel, 2 labels, 1s, 27 MB

sublabel, 10 labels, 15s, 211 MB

Convex Case: $\rho(x, u(x)) = (u(x) - f(x))^2$

direct, no labels 0.6s, 11.78 MB

sublabel, 2 labels, 1s, 27 MB

sublabel, 10 labels, 15s, 211 MB

traditional, 8 labels, suboptimal, 113 MB

Thomas Möllenhoff (TU Munich)

Convex Case: $\rho(x, u(x)) = (u(x) - f(x))^2$

direct, no labels 0.6s, 11.78 MB

sublabel, 2 labels, 1s, 27 MB

sublabel, 10 labels, 15*s*, 211 MB

traditional, 8 labels, suboptimal, 113 MB

els, traditional, 16 labels, MB <mark>suboptimal</mark>, 226 MB Sublabel-Accurate Relaxation of Nonconvex Energies

10/1

Convex Case: $\rho(x, u(x)) = (u(x) - f(x))^2$

direct, no labels 0.6s, 11.78 MB

sublabel, 2 labels, 1s, 27 MB

sublabel, 10 labels, 15s, 211 MB

traditional, 8 labels, suboptimal, 113 MB

traditional, 16 labels, suboptimal, 226 MB

traditional, 256 labels, suboptimal, 3619 MB

Thomas Möllenhoff (TU Munich)

traditional, 2 labels

sublabel, 2 labels

traditional, 2 labels traditional, 4 labels

sublabel, 2 labels

sublabel, 4 labels

sublabel, 2 labels

sublabel, 4 labels

sublabel, 8 labels

sublabel, 2 labels

sublabel, 4 labels

sublabel, 8 labels

sublabel, 16 labels

Conclusion

 We proposed a sublabel-accurate relaxation for a certain class of nonconvex energies
- We proposed a sublabel-accurate relaxation for a certain class of nonconvex energies
- Requires far fewer labels than traditional lifting techniques

- We proposed a sublabel-accurate relaxation for a certain class of nonconvex energies
- Requires far fewer labels than traditional lifting techniques
- Leads to substantial improvements in runtime and memory

- We proposed a sublabel-accurate relaxation for a certain class of nonconvex energies
- Requires far fewer labels than traditional lifting techniques
- Leads to substantial improvements in runtime and memory
- It generalizes traditional lifting methods from piecewise linear to piecewise convex approximations

- We proposed a sublabel-accurate relaxation for a certain class of nonconvex energies
- Requires far fewer labels than traditional lifting techniques
- Leads to substantial improvements in runtime and memory
- It generalizes traditional lifting methods from piecewise linear to piecewise convex approximations

https://github.com/tum-vision/sublabel_relax

Comparison with [Zach, Kohli, ECCV '12]

Denoising with robust data term

$$\rho(x, u) = (\alpha/2) \min \left\{ \nu, (u - f(x))^2 \right\}$$

Special case of our method: anisotropic regularizer ||\(\nabla u)|\)_1
 Our relaxation uses only half the number of variables

proposed tight relaxation, 33 labels, Energy: 194836

[Zach, Kohli, ECCV '12], DC-MRF, 33 labels, Energy: 194845

Thomas Möllenhoff (TU Munich)

Sublabel-Accurate Relaxation of Nonconvex Energies