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Variational Approaches in Computer Vision

image denoising stereo matching optical flow

Minimize energies of the form

min
u:Ω→Γ

∫
Ω
ρ (x, u(x)) + λ · |∇u(x)|dx

Challenges:

Nonconvex data term ρ : Ω× Γ→ R

Continuous range Γ = [γmin, γmax] ⊂ R
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Discrete Multilabel Optimization [Ishikawa, TPAMI ’03]

+ optimality guarantees

− discretization of Ω ⇒ grid bias

− discretization of Γ ⇒ label bias
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Continuous Lifting [Pock et al., ECCV ’08]

1

0

u

Ω

Γ

+ optimality guarantees

+ isotropic regularization ⇒ no grid bias

− discretization of Γ ⇒ label bias
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Sublabel-Accurate Representation

Thomas Möllenhoff (TU Munich) Sublabel-Accurate Relaxation of Nonconvex Energies 4/1



Sublabel-Accurate Representation

Thomas Möllenhoff (TU Munich) Sublabel-Accurate Relaxation of Nonconvex Energies 4/1



Sublabel-Accurate Representation

traditional representation

2 labels, 0.07 GB
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Sublabel-Accurate Representation

traditional representation

4 labels, 0.14 GB
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Sublabel-Accurate Representation

traditional representation

8 labels, 0.27 GB
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Sublabel-Accurate Representation

traditional representation

16 labels, 0.54 GB
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Sublabel-Accurate Representation

traditional representation

32 labels, 1.09 GB
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Sublabel-Accurate Representation

traditional representation

64 labels, 2.17 GB
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Sublabel-Accurate Representation

traditional representation

128 labels, 4.34 GB

Thomas Möllenhoff (TU Munich) Sublabel-Accurate Relaxation of Nonconvex Energies 4/1



Sublabel-Accurate Representation

traditional representation

128 labels, 4.34 GB

sublabel representation

8 labels, 0.57 GB
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Related Work and Contribution

MRFs with continuous state spaces / continuous graphical models

[Zach, Kohli, ECCV ’12], [Fix, Agarwal, ECCV ’14]

Partially sublabel-accurate spatially continuous multilabeling

[Lellmann et al. ICCV ’13]

Key contributions of this work:

+ First spatially continuous fully sublabel-accurate formulation

+ Provably tightest local convex relaxation

+ Unification of lifting and direct convex optimization
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Thomas Möllenhoff (TU Munich) Sublabel-Accurate Relaxation of Nonconvex Energies 5/1



Related Work and Contribution

MRFs with continuous state spaces / continuous graphical models

[Zach, Kohli, ECCV ’12], [Fix, Agarwal, ECCV ’14]

Partially sublabel-accurate spatially continuous multilabeling

[Lellmann et al. ICCV ’13]

Key contributions of this work:

+ First spatially continuous fully sublabel-accurate formulation

+ Provably tightest local convex relaxation

+ Unification of lifting and direct convex optimization
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Piecewise Linear versus Piecewise Convex Lifting

ρ(x, u)

u

Traditional multilabeling methods [Ishikawa, TPAMI ’03],

[Pock et al., ECCV ’08] specify the cost only at the labels

Leads to a linear relaxation, easy to optimize

We assign meaningful cost for solutions between the labels

The proposed relaxation is nonlinear, but still convex!
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Tightest Convex Extension

10 =

[
0

0

]
11 =

[
1

0

]
12 =

[
1

1

]

γ1 γ2 γ3

ρ1

ρ2

ρ(u) =

ρ(γi + α(γi+1 − γi)), if u = 1i−1 + α (1i − 1i−1) ,

∞, otherwise.

Proposition: The tightest convex extension is given by

ρ∗∗(u) = sup
v∈C

〈[
u −1

]T
,v

〉
, C =

{
v ∈ RL | Aiv ∈ epi (ρ∗i ) ,∀i

}
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Numerical Optimization

Proposition: Tight local convex extension for lifted regularizer is∫
Ω
|∇u|dx↔ sup

p:Ω→K
〈u,Divp〉 , K = {p | ‖pi‖ ≤ γi+1 − γi,∀i}

Leads to convex-concave saddle-point problem

min
u:Ω→RL−1

max
v:Ω→C
p:Ω→K

〈u,Divp〉+

〈[
u −1

]T
,v

〉

Solved on GPU using a first-order primal-dual algorithm

[Pock, Cremers, Bischof, Chambolle, ICCV ’09]
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Backprojecting the Lifted Solution

u∗
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Thomas Möllenhoff (TU Munich) Sublabel-Accurate Relaxation of Nonconvex Energies 9/1



Backprojecting the Lifted Solution

u∗

u∗ γ3γ2γ1
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Convex Case: ρ (x, u(x)) = (u(x)− f(x))2

direct, no labels

0.6s, 11.78 MB

sublabel, 2 labels,

1s, 27 MB

sublabel, 10 labels,

15s, 211 MB

traditional, 8 labels,

suboptimal, 113 MB

traditional, 16 labels,

suboptimal, 226 MB

traditional, 256 labels,

suboptimal, 3619 MB
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Thomas Möllenhoff (TU Munich) Sublabel-Accurate Relaxation of Nonconvex Energies 10/1



Stereo Matching, ρ(x, u(x)) = ‖I1(x)− I2(x1 + u(x), x2)‖

traditional, 48 labels, 52s, 1.49 GB sublabel, 8 labels, 30s, 0.49 GB
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Stereo Matching, ρ(x, u(x)) = ‖I1(x)− I2(x1 + u(x), x2)‖

traditional, 2 labels

traditional, 4 labels traditional, 8 labels traditional, 16 labels

sublabel, 2 labels

sublabel, 4 labels sublabel, 8 labels sublabel, 16 labels
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Conclusion

We proposed a sublabel-accurate relaxation for a certain class

of nonconvex energies

Requires far fewer labels than traditional lifting techniques

Leads to substantial improvements in runtime and memory

It generalizes traditional lifting methods from piecewise linear

to piecewise convex approximations

https://github.com/tum-vision/sublabel_relax
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Comparison with [Zach, Kohli, ECCV ’12]

Denoising with robust data term

ρ(x, u) = (α/2) min
{
ν, (u− f(x))2

}
Special case of our method: anisotropic regularizer ‖∇u‖1
Our relaxation uses only half the number of variables

proposed tight relaxation,

33 labels, Energy: 194836

[Zach, Kohli, ECCV ’12], DC-MRF,

33 labels, Energy: 194845
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