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Advanced Color Image Processing – Variational Models

Examples Sessions

1. In this example we will explore several ways of numerically solving variational formulations of
the denoising problem for a one-dimensional signal. The task tv 1d.m file contains a MATLAB
skeleton code to get you started. You will also have to have CVX set up with the MOSEK solver,
see www.cvxr.com . The file is split into sections, which can be run individually by pressing
Ctrl+Return.

(a) Run section 1) to load and visualize the input data.

(b) Section 2) shows how to use CVX for solving the Tikhonov-regularized problem

min
u

1
2

∫

Ω

(u − I)2dx + λ
1
2

∫

Ω

‖Du‖2
2dx, (0.1)

where I : Ω → R is the noisy input data and Ω = [0, 5]. Familiarize yourself with how CVX
is used. Try different parameter choices for λ and observe the changes. Try to find a good
setting that removes the noise but preserves the jumps. What do you notice?

(c) From the lectures we know that the Tikhonov problem can also be solved directly by solving
a linear equation system. Implement this technique in section 3) and verify that it gives the
same result as in 1b).

(d) The TV-L1 model

min
u

1
2

∫

Ω

|u − I| dx + λ

∫

Ω

|Du| (0.2)

is known to be work particularly well if the data that should be reconstructed is piecewise
constant. Implement the model in CVX in section 4). Try different settings for λ and find one
that removes the noise but preserves the edges.

(e) Many solvers require to reformulate the problem into a standard form. So far we have been
using CVX to do this transformation, but it is not always available or fast enough. In this
section we will see how a problem can be manually reformulated into the standard form.
We will use the following standard form for Linear Programs (LP):

min
x∈Rn

c>x s.t. Ax > b. (0.3)

Transform the TV-L1 problem (0.2) into this standard form. You will most likely need to intro-
duce some extra variables and constraints. Implement the reformulated problem in Section 5)
using CVX and verify that it gives the same result as in 1d).

(f) Solve the Linear Program in 1e) directly using MOSEK’s msklpopt command. Section 6)
shows how to call msklpopt to solve problems of the form (0.3). Verify that it gives the same
result as the other methods.

2. When working with color images, the choice of the norm can make a subtle but important dif-
ference. In this example we will look at the simple Frobenius norm and compare it to the more
advanced nuclear norm. The source code for this example can be found in task colornorms.m .

(a) Run section 1) and complete the missing parts in section 2) to solve the Rudin-Osher-Fatemi
model

min
u

1
2

∫

Ω

‖u − I‖2 dx + λ

∫

Ω

‖Du‖F , (0.4)

with the Frobenius norm ‖A‖F = (
∑

i,j A2
ij)

1/2. The norms can be computed using the norms
command (see help norms ).

1



(b) We now would like to solve the model with the nuclear norm instead of the Frobenius norm:

min
u

1
2

∫

Ω

‖u − I‖2 dx + λ

∫

Ω

‖Du‖∗. (0.5)

From the lectures we know that the nuclear norm can be rewritten as a semidefinite program.
Use this fact to implement the missing parts in section 3) to solve model (0.5) using CVX.
Semidefinite constraints can be enforced in CVX by using the constraint notation

A == semidefinite([k k n]) ,

which enforces that each matrix A(:,:,i) (for i=1:end ) be positive semidefinite. It might
be useful to know that MATLAB allows to concatenate multi-dimensional matrices as follows:
If A is an array of n matrices of size [k k] each, i.e., size(A)=[k k n] , and size(B) =
[k m n] , then size([A B]) = [k k+m n] , and similar for vertical concatenation [A;B] .
Another useful command might be permute(A,[2 1 3]) , which transposes the first two
dimensions of A.
Compare the results to the results obtained using the Frobenius norm. What are the differ-
ences?

3. In the lectures we have seen that combinatorial problems such as image segmentation can be
solved by solving a convex relaxed problem instead. A simple approach for solving the segmen-
tation problem with mlabels is to use the following constrained variational model:

min
u:Ω→Rm

m∑

i=1

∫

Ω

s(x, i)ui(x)dx + λ

∫

Ω

‖Du‖F . (0.6)

s.t. u > 0,

m∑

i=1

ui(x) = 1, ∀x ∈ Ω. (0.7)

A skeleton for solving this problem is provided in task segmentation.m .

(a) Run section 1) to load and visualize the input image.

(b) The goal is to segment this image into three classes: sky (class 1), flowers (class 2), and leaves
(class 3). For each of the classes, a typical color is provided in the vector c(i,:) . Complete
section 2) for computing the costs s so that the cost for assigning class label i to a point x
is ‖I(x) − c(i, :)‖2, where I(x) is the color of the input image at point x. Run the section to
visualize what the segmentation looks like if only the local features are used.

(c) Implement the model (0.7) in section 3) and solve it using CVX. Find a good setting for the
parameter λ and compare the results to the pointwise segmentation.
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