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Overview

Variational methods in image processing



Model
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Model

Problem formulation

Given data I , find the (image-)information u so that

I = T (u) + n,

where T is the “forward model” describing how the measurements I are
generated from u, and n is a random variable modelling the noise.

T
→
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Reconstruction

Difficulties

In many applications, reconstructing u from I is

I not unique (T “forgets” data),

I not stable (small errors in I → large error in u)

I not deterministic due to the random noise n

R. Hocking J. Acosta-Cabronero
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What is a “typical” image?
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Prior knowledge

Variational method

We reconstruct the (image-) information u from the data I by minimizing
an energy

min
u

{ D(T (u); I )
︸ ︷︷ ︸

data term, compatibility
with measurements f

+ R(u)
︸︷︷︸

regularizer, prior knowledge
(problem specific)

}

Advantages:

I Intuitive modeling by specifying properties of desired output

I Often statistical motivation, e.g. Maximum A Posteriori-estimate

I Modularity and reusability of individual components

R(u)=
∫
Ω
‖Du‖

→
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Strategies for building regularisers

Trade-offs

model complexity vs. tractability/computability

local minimizers vs. global minimizers

Top-down approach

I Difficult physical/biological
models

I Advantages:
I very specific
I model parameters contain

addition information

I Disadvantages:
I Optimization is difficult

Bottom-up approach

I Combine simple,
well-understood components
with adaptivity and
relaxation

I Advantages:
I mathematical analysis
I global minimization

I Disadavantages:
I much less specific
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Overview

Convex Optimization



Extended real valued-functions

In the literature, optimization problems are commonly formulated using an
objective function f0 : Rn → R and constraint functions
f1, . . . , fm : Rn → R, e.g.,

min
x∈Rn

f0(x) s.t. x ∈ C ,

C = {x ∈ Rn|fi (x) 6 0, i = 1, . . . , m}.

By allowing +∞ as the value of the objective function we can rewrite this
in a very compact form:

min
x∈Rn

f (x),

where f : Rn → R ∪ {±∞}, with the definition x 6∈ C ⇔ f (x) = +∞.
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Extended real-valued calculus

Definition (extended real line)

We define R̄ := R ∪ {+∞,−∞} with the rules:

1. ∞ + c = ∞, −∞ + c = −∞ for all c ∈ R,

2. 0 ∙ ∞ = 0, 0 ∙ (−∞) = 0,

3. inf R = sup ∅ = −∞, inf ∅ = supR = +∞.

4. +∞−∞ = −∞ + ∞ = +∞ (sometimes; careful:
−∞ = λ(∞−∞) 6= λ∞− λ∞ = ∞ if λ < 0)

Definition (indicator function)

For C ⊆ Rn, denote

δC : Rn → R̄, δC (x) :=

{
0, x ∈ C ,
+∞, x 6∈ C .
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Constrained minimization

Example (constrained minimization via addition of indicator function)

Assume f : Rn → R, C ⊆ Rn, C 6= ∅. Then

x ′ minimizes f over C ⇔ x ′ minimizes f + δC over Rn.
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Argmin, domain, proper

Definition (argmin, effective domain, proper)

For f : Rn → R̄, denote

1. dom f := {x ∈ Rn|f (x) < +∞}

2. arg min f :=

{
∅, f ≡ +∞,
{x ∈ Rn|f (x) = inf f }, f < +∞.

(set of

minimizers/optimal solutions)

3. f is “proper” :⇔ dom f 6= ∅ and f (x) > −∞∀x ∈ Rn (i.e., f 6= +∞
and f > −∞).
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Convexity

Definition (convex sets and functions)

1. f : Rn → R̄ is “convex” :⇔

f ((1 − τ)x + τy) 6 (1 − τ)f (x) + τ f (y) ∀x , y ∈ Rn, τ ∈ (0, 1).

2. C ⊆ Rn is “convex” :⇔ δC is
convex⇔ (1 − τ)x + τy ∈ C ∀x , y ∈ C , τ ∈ (0, 1).

3. f : Rn → R̄ is “strictly convex” :⇔ f convex and the inequality holds
strictly for all x 6= y with f (x), f (y) ∈ R and for all τ ∈ (0, 1).
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Global optimality

Theorem (global optimality)

Assume f : Rn → R̄ is convex. Then

1. arg min f is convex.

2. x is a local minimizer of f ⇒ x is a global minimizer of f .

3. f strictly convex and proper ⇒ f has at most one global minimizer.
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Convexity

Example

1. Rn is convex,

2. {x ∈ Rn|x > 0} is convex,

3. {x ∈ Rn|‖x‖2 6 1} is convex,

4. {x ∈ Rn|‖x‖2 6 1, x 6= 0} is not convex,

5. the half-spaces {x |a>x + b > 0} are convex,

6. f (x) = a>x + b is convex (inequality holds as an equality) but not
strictly convex,

7. f (x) = ‖x‖2
2 is strictly convex,

8. f (x) = ‖x‖2 is convex but not strictly convex.
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Convex functions

Theorem (derivative tests)

Assume C ⊆ Rn is open and convex, and f : C → R is differentiable.
Then the following conditions are equivalent:

1. f is [strictly] convex,

2. f (x) + 〈y − x ,∇f (x)〉 6 f (y) for all x , y ∈ C [and < f (y) if x 6= y],

3. ∇2f (x) is positive semidefinite for all x ∈ C.

If ∇2f is positive definite, then f is strictly convex (but not the other way).
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Convexity

Proposition (operations that preserve convexity)

Let I be an arbitrary index set. Then

1. fi , i ∈ I convex ⇒ f (x) := supi∈I fi (x) is convex,

2. fi , i ∈ I strictly convex, I finite ⇒ f (x) := supi∈I fi (x) strictly
convex,
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Convex calculus

Proposition

1. (nonnegative linear combination) Assume f1, . . . , fm : Rn → R̄ are
convex, λ1, . . . , λm > 0. Then f :=

∑m
i=1 λi fi is convex. If at least

one of the fi with λi > 0 is strictly convex, then f is strictly convex.

2. (linear composition) Assume f : Rm → R̄ is convex, A ∈ Rm×n, and
b ∈ Rm. Then

g(x) := f (Ax + b)

is convex.
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Overview

How to build a regularizer



Tikhonov regularization

I A standard assumption is that images are smooth in some way, i.e.,
they do not oscillate too much.

I This means that the gradient will generally be small, except at
boundaries

I → penalize the norm of the gradient!

Example (Tikhonov regularization for denoising)

Given I : Ω → R, find

min
u:Ω→R

f (u) :=
1

2

∫

Ω
‖u − I‖2dx + λ

∫

Ω
‖∇u‖2dx .
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Tikhonov regularization – numerical solution

Example (Tikhonov regularization for denoising)

Given I : Ω → R, find

min
u:Ω→R

f (u) :=
1

2

∫

Ω
‖u − I‖2dx + λ

∫

Ω
‖∇u‖2dx .

Example (Tikhonov discretized problem)

Given I ∈ Rn, find

min
u∈Rn

f (u) :=
1

2

n∑

i=1

(ui − Ii )
2 + λ

n∑

i=1

‖Giu‖
2
2

=
1

2
‖u − I‖2

2 + λ‖Gu‖2
2
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Tikhonov regularization – numerical solution

Example (Tikhonov discretized problem)

min
u∈Rn

f (u) =
1

2
‖u − I‖2

2 + λ‖Gu‖2
2

Solving the Tikhonov problem

The discretized energy f is convex (and even strictly convex). Therefore
any local minimizer is a global minimizer. We know from Fermat’s
principle that for differentiable functions f : Rn → R, any local minimizer
u∗ ∈ Rn of f must satisfy

∇f (u∗) = 0.

This leads to a sparse linear equation system which can be solved fast:

u − I + λG>Gu = 0 ⇒ (Id + λG>G )u = I .
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Tikhonov regularization
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Tikhonov regularization
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Total variation

I Tikhonov regularization removes edges – why? The quadratic
regularizer makes continuous small change cheaper than sudden big
changes with the same height.

I → Change the exponent!

Example (TV regularization for denoising, Rudin-Osher-Fatemi)

Given I : Ω → R, find

min
u:Ω→R

f (u) :=
1

2

∫

Ω
‖u − I‖2dx + λ

∫

Ω
‖Du‖

︸ ︷︷ ︸
=:TV (u)

.

Remark: For a correct definition in the function space, the gradient ∇u
has been replaced by a “distributional gradient” Du, but for the discretized
problem it generally does not make a difference.
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TV regularization
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TV regularization
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TV regularization
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Total variation
Motivation: We would like to define something like

f (u) =

∫

Ω
‖∇u(x)‖2dx , (1)

but this needs u to be differentiable. How to do it for non-differentiable u?

Definition

For u : Ω → R, the total variation (TV) of u is defined as

TV(u) := sup
v∈C1

c (Ω,Rn),‖v‖∞61

∫

Ω
〈u, Div v〉dx , (2)

where Div v = ∂x1v1 + . . . + ∂xnvn, and for v ∈ C 1
c (Ω,Rn),

‖v‖∞ = sup
x∈Ω

‖v(x)‖2.

J. Lellmann – Variational image restoration and segmentation 25



Geometric properties

For characteristic functions, the total variation is just the length of the
boundary of the underlying set (compare the meaning in 1D):

Proposition

Assume A ⊂ Ω is a set so that its boundary is sufficiently smooth and
satisfies Len(Ω ∩ ∂A) < ∞. Define

1A(x) :=

{
1, x ∈ A,
0, x 6∈ A.

Then

TV(1A) = Len(Ω ∩ ∂A).

Total variation can therefore be seen as a “geometric” regularizer that
penalizes the length of the jump set.
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Overview

How to solve the discretized problem?



TV is non-smooth

Example (TV regularization for denoising)

min
u:Ω→R

f (u) :=
1

2

∫

Ω
‖u − I‖2dx + λ

∫

Ω
‖Du‖2.

Example (TV discretized problem)

Given I ∈ Rn, find

min
u∈Rn

f (u) :=
1

2

n∑

i=1

(ui − Ii )
2 + λ

n∑

i=1

‖Giu‖2

The energy f is convex but not differentiable! This means we cannot
simply use Fermat’s principle but have to use specialized non-smooth
convex optimization methods based on primal-dual or conic programming
formulations.
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Linear programs

Many solvers for non-differentiable convex problems require the problem to
be rewritten in a standard form. A classical form ist the Linear Program
(LP):

Definition (Linear Program, LP)

For c ∈ Rn, b ∈ Rm, A ∈ Rm×n, solve

inf
x∈Rn

c>x

s.t. Ax > b,

where the inequality is meant element-wise.
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Linear programs

Example

This is surprisingly powerful:

min
x

|x1 − x2| s.t. x1 = −1, x2 > 0

 min
x ,y

y s.t. y > |x1 − x2|, x1 > −1, x1 6 −1, x2 > 0,

 min
x ,y

y s.t. y > x1 − x2, y > x2 − x1, x1 > −1,−x1 > 1, x2 > 0,

and finally

min
(x1,x2,y)∈R3

(0, 0, 1)
︸ ︷︷ ︸

c>




x1

x2

y





︸ ︷︷ ︸
x

s.t.









−1 1 1
1 −1 1
1 0 0
−1 0 0
0 1 0









︸ ︷︷ ︸
A




x1

x2

y





︸ ︷︷ ︸
x

>









0
0
−1
1
0









︸ ︷︷ ︸
b

.

LPs are often too restrictive for image processing. How to keep the
standard form but
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Cones

Many image processing problems cannot be written in LP form. However
we would still like to keep a similar standard form. The solution is to
generalize what “>” means in the Ax > b constraint.

Definition (cone)

K ⊆ Rn “cone” :⇔

0 ∈ K , λx ∈ K ∀x ∈ K , λ > 0.

Note that cones can also be nonconvex , such as the cone
K = (R>0 × {0}) ∪ ({0} × R>0).
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Generalized inequalities

Proposition (generalized inequalities)

For a closed convex cone K ⊆ Rn we define the “generalized inequality”

x >K y :⇔ x − y ∈ K .

This “behaves” like the usual > relation:

1. x >K x (reflexivity),

2. x >K y, y >K z ⇒ x >K z (transitivity),

3. x >K y ⇒ −y >K −x and x >K y , λ > 0 ⇒ λx >K λy,

4. x >K y , x ′ >K y ′ ⇒ x + x ′ >K y + y ′,

5. If xk → x and y k → y with xk >K yk for all k ∈ N, then x >K y.

If “>” is a relation on Rn satisfying 1.-5., then it can be represented as
>K for a closed convex cone.
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Conic programs

Definition (conic program)

For any closed, convex cone K ⊆ Rm, a matrix A ∈ Rm×n and vectors
c ∈ Rn, b ∈ Rm, we define the “conic program” or “conic problem” (CP)

inf
x

c>x

s.t. Ax >K b.

Many commercial and free “out of the box” solvers require the problem to
be reformulated as a conic problem or similar standard form!
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Conic programs

Example (standard cone)

The “standard cone”

KLP
n := {x ∈ Rn|x1, . . . , xn > 0}

is a closed, convex cone. The associated conic program is the “linear
program” (LP)

inf
x

c>x

s.t. Ax > b.
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Second-order cone

Example (second-order cone)

The “second-order cone” (also called “Lorentz cone”, “ice-cream cone”)

KSOCP
n :=

{

x ∈ Rn|xn >
√

x2
1 + . . . + x2

n−1

}

is a pointed, closed, convex cone. Conic programs with
K = KSOCP

n1
× . . . × KSOCP

nl
are called “second-order conic programs”

(SOCP).
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Second-order cone programs

Example

min sx ‖x‖2 s.t. x1 + x2 > 1.

This can be rewritten as a second-order cone program:

minx ,y y

s.t. y > ‖x‖2, x1 + x2 − 1 > 0.

⇔ Id

(
x
y

)

>KSOCP
3

0,
(

1 1 0
)
(

x
y

)

>KSOCP
1

(
1
)
.

The LP constraints (inequalities) can also be written as a simple SOCP
constraint, but they are usually left in linear form to make notation simpler.
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Total Variation as SOCP

I We would like to reformulate the total variation energy

min
u∈Rn

f (u) :=
1

2

n∑

i=1

|ui − Ii | + λ
n∑

i=1

‖Giu‖2

in conic program form (removing the square in the data term makes it
simpler – quadratic data terms require either so-called semidefinite
cones or conic programs with quadratic objective).
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Total Variation as SOCP

I We would like to reformulate the total variation energy

min
u∈Rn

1

2

n∑

i=1

|ui − Ii | + λ
n∑

i=1

‖Giu‖2

J. Lellmann – Variational image restoration and segmentation 36



Total Variation as SOCP

I Step 1: introduce auxiliary variables for the data term:

min
u∈Rn,s∈Rn

1

2

n∑

i=1

si + λ
n∑

i=1

‖Giu‖2

s.t. si > |ui − Ii |, i = 1, . . . , n.
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Total Variation as SOCP

I Step 2: introduce auxiliary variables for the regularizer:

min
u∈Rn,s∈Rn,t∈Rn

1

2

n∑

i=1

si + λ

n∑

i=1

ti

s.t. si > |ui − Ii |, i = 1, . . . , n,

ti > ‖Giu‖2, i = 1, . . . , n.
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Total Variation as SOCP

I Step 2: introduce auxiliary variables for the regularizer:

min
u∈Rn,s∈Rn,t∈Rn

1

2

n∑

i=1

si + λ
n∑

i=1

ti

s.t. si > |ui − Ii |, i = 1, . . . , n,

ti > ‖Giu‖2, i = 1, . . . , n.

The objective function is now linear, and the constraints have
second-order conic (SOCP) form. We may have to introduce more
variables to bring the problem into the specific form that the solver
requires.
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Higher-order Total Variation

I Total variation keeps edges but introduces “stair-casing” artifacts on
continuous gradients

I Idea: Penalizing the first derivative keeps the function piecewise
constant. Penalizing the second derivatives should keep the function
piecewise linear:

min
u:Ω→R

f (u) :=
1

2

∫

Ω
‖u − I‖2dx + λ

∫

Ω
‖D2u‖2

︸ ︷︷ ︸
=:TV 2(u)

where D2 is the (generalized) Hessian of u.

I We can also use third- or even higher-order derivatives Dku.

I Problem: we cannot have jumps again!
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Infimal convolution

Definition (Infimal convolution)

For functions f1, . . . , fn : X → R̄ for any set X , we define the infimal
convolution/inf-convolution (f1� ∙ ∙ ∙�fn) : X → R̄ as

(f1� ∙ ∙ ∙�fk)(u) = inf
z1,...,zk ,z1+...+zk=u

(f1(z
1) + . . . + fk(zk)).
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Infimal convolution

Definition (Infimal convolution)

For functions f1, . . . , fn : X → R̄ for any set X , we define the infimal
convolution/inf-convolution (f1� ∙ ∙ ∙�fn) : X → R̄ as

(f1� ∙ ∙ ∙�fk)(u) = inf
z1,...,zk ,z1+...+zk=u

(f1(z
1) + . . . + fk(zk)).

Example (ROF is inf-convolution)

min
u:Ω→R

1

2

∫

Ω
‖u − I‖2dx + λ

∫

Ω
‖Du‖2dx .
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Infimal convolution

Definition (Infimal convolution)

For functions f1, . . . , fn : X → R̄ for any set X , we define the infimal
convolution/inf-convolution (f1� ∙ ∙ ∙�fn) : X → R̄ as

(f1� ∙ ∙ ∙�fk)(u) = inf
z1,...,zk ,z1+...+zk=u

(f1(z
1) + . . . + fk(zk)).

Example (ROF is inf-convolution)

min
u,w :Ω→R, u+w=I

1

2

∫

Ω
‖w‖2dx

︸ ︷︷ ︸
f1(w)

+ λ

∫

Ω
‖Du‖2dx

︸ ︷︷ ︸
f2(u)

.

→ “Cartoon-texture decomposition”
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Infimal convolution

I We can use infimal convolution to combine first- and second-order
regularizers!

Example (TV − TV 2 regularization)

inf
u,v ,w ,u+v+w=I

{
1

2
‖w‖2

2 + λ TV(u) + μ TV2(v)

}

.

I This naturally splits the image into parts
I With small “Gaussian” energy (w)
I With few nonzero gradient/piecewise constant (u)
I With few nonzero second derivatives/piecewise affine, but without

jumps (v)
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Total Generalized Variation

I We can also split the gradient instead:

Example (Total Generalized Variation, cascading formulation)

inf
u,v ,w ,v+w=Du

{
1

2
‖u − I‖2

2 + λ

∫

Ω
|v | + μ

∫

Ω
‖Ew‖2

}

.

Classically E is the symmetrized gradient, 1
2Dw + 1

2(Dw)>.
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Overview

Multichannel images



Vector-TV

I What if we have u : Ω → Rm instead?

I Natural extension:

min
u:Ω→Rm

1

2

∫

Ω
‖u(x) − I (x)‖2

2dx + λ

∫

Ω
‖Du‖#.

I Which norm for ‖ ∙ ‖#? Du(x) ∈ Rn×m (in the smooth case) → need
a matrix norm!

I Common choices: For A = (a1, . . . , am) ∈ Rn×m,

‖A‖# = ‖a1‖2 + ∙ ∙ ∙ + ‖am‖2 channel-by-channel

‖A‖# =




m∑

i=1

n∑

j=1

(ai
j)

2





1/2

Frobenius norm

I Both representable as an SOCP!
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Singular value-based norms

I Idea: A symmetric matrix A ∈ Rn×n can be written in the form

A = PΣP>,

where P is orthogonal (PP> = P>P = Id) and Σ = diag(σ1, . . . , σn)
is a diagonal matrix with the eigenvalues σ1 > σ2 > . . . > σn of A.

I We could use norms derived from the eigenvalues, for example

‖A‖# = |σ1| + . . . + |σn|, nuclear norm

‖A‖# = max
i=1,...,n

|σi |, spectral norm

‖A‖# = (|σ1|
p + ∙ ∙ ∙ + |σn|

p)1/p Schatten-p-norm

I But: For u : Ω → Rm, we usually have ∇u(x) ∈ Rn×m, which is
neither quadratic nor symmetric.
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Singular values

Proposition (Singular Value Decomposition)

Every matrix A ∈ Rn×m has a singular value decomposition (SVD) of the
form

A = UΣV>,

where U ∈ Rn×n, V ∈ Rm×m, U and V are unitary matrices, i.e.,
U>U = Idn×n, V>V = Idm×m, and Σ ∈ Rn×m is a matrix with the
unique (!) singular values σ1 > σ2 > ∙ ∙ ∙ > σn > 0 on the diagonal, and
zero everywhere else.
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SVD

Example (SVD I)

A =




1 2
2 4
8 4



 = UΣV>, Σ =




9.88 0

0 2.72
0 0



 ,

U =




0.20 0.40 −0.89
0.40 0.80 0.45
0.90 −0.44 0



, V =

(
0.83 −0.56
0.56 0.83

)
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SVD

Example (SVD II)

A =




1 2
2 4
4 8



 = UΣV>, Σ =




10.25 0

0 0
0 0



 ,

U =




0.22 −0.97 −0.11
0.44 0 0.90
0.87 0.24 −0.42



, V =

(
0.45 −0.89
0.89 0.45

)
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SVD

Example (SVD II)

A =




1 2
2 4
4 8



 = UΣV>, Σ =




10.25 0

0 0
0 0



 ,

U =




0.22 −0.97 −0.11
0.44 0 0.90
0.87 0.24 −0.42



, V =

(
0.45 −0.89
0.89 0.45

)

I The number of non-zero singular values is the same as the rank of the
matrix.

I We can use regularizers based on the singular values, for example the
nuclear norm, Schatten p-norms etc.
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Nuclear norm

Definition (nuclear norm)

For A ∈ Rn×m, the nuclear norm is defined as

‖A‖∗ = |σ1| + ∙ ∙ ∙ + |σn|,

where σ1 > σ2 > ∙ ∙ ∙ > σn are the singular values of A.

Example (Nuclear norm TV/low rank regularization)

min
u:Ω→R

1

2

∫

Ω
‖u − I‖2

2dx + λ

∫

Ω
‖Du‖∗.

How can we get this into a standard form? It is not an SOCP!
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Semidefinite cone

Definition

The “positive semidefinite cone”

KSDP
n := {X ∈ Rn×n|X symmetric positive semidefinite}

is a closed, convex cone. Conic programs with K = KSDP
n1

× . . . × KSDP
nl

are called “semidefinite programs” (SDP):

infx∈Rn c>x

s.t. Ax − b ∈ K .

Here A is a linear operator A : Rn → Rn1×n1 × ∙ ∙ ∙ × Rnl×nl , and
b ∈ Rn1×n1 × ∙ ∙ ∙ × Rnl×nl . Often x and c are also written as matrices
X , C ∈ Rn×n with the inner product 〈C , X 〉 :=

∑
i ,j CijXij replacing c>x .
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Nuclear norm as SDP

Proposition

For M ∈ Rn×m, the nuclear norm can be written in SDP form:

‖M‖∗ = |σ1| + ∙ ∙ ∙ + |σn|

= min
B∈Rn×n,C∈Rm×m

1

2
trB +

1

2
trC

s.t.

(
B M

M> C

)

positive semidefinite.

This can be proven rigorously using the SVD of A, but as a motivation
consider the case n = 1, i.e., M = a ∈ R: Then the semidefiniteness
means b > 0, c > 0, and bc − a2 > 0, i.e., bc > a2. We compute the
minimum of 1

2(b + c) subject to bc > a2. The latter will hold with
equality, thus by substitution and optimality conditions b = c = |a|.
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Overview

Segmentation and Relaxation



Segmentation

I In many interesting applications the range is discrete:
In every x ∈ Ω, a discrete decision has to be made.
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Segmentation
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Segmentation
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Motivation – Multiclass Labeling

I Applications: Segmentation, denoising, 3D reconstruction, depth
from stereo, inpainting, photo montage, optical flow,...
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Motivation – Problem

I Finite labeling problem:

I Partition image domain Ω into L regions

I Discrete decision at each point in continuous domain Ω

I Variational Approach:

min
`:Ω→{1,...,L}

∫

Ω
s(`(x), x)dx

︸ ︷︷ ︸
local data fidelity

+ J(`)
︸︷︷︸

regularizer

I Why this form?
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Bayesian model

I Assume the domain Ω consists of a finite set of points (pixels) x ∈ Ω
and we have a local probabilistic model for the observation
I : Ω → Rm given the ground-truth (true) segmentation `(x),

P(I |`) =
∏

x∈Ω

P(I (x)|`(x)).

I Classic example: Two classes, Gaussian distribution:

P(I (x)|`(x) = 1) = N (I (x); c1, σ
2
1) ∼ e

− (I (x)−c1)2

σ2
1

P(I (x)|`(x) = 2) = N (I (x); c2, σ
2
2) ∼ e

− (I (x)−c2)2

σ2
2
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Bayesian model

I Given the observation I , we would like to find the segmentation ` that
maximizes the “a posteriori probability”. Using the Bayes rule:

max
`
P(`|I ) =

P(`, I )

P(I )
=
P(I |`)P(`)

P(I )
.

I The P(I ) part is not relevant, and instead of maximizing P(`|I ) we
can find ` by minimizing − logP(`|I ):

min
`

− log(P(I |`)P(`)) = − logP(I |`) − logP(`)

=

{
∑

x∈Ω

− logP(I (x)|`(x))

}

︸ ︷︷ ︸
≈
∫
Ω s(`(x),x)dx

− logP(`)
︸ ︷︷ ︸

J(`)

I For the Gaussian model:

s(1, x) = (I (x) − c1)
2/σ2

1, s(2, x) = (I (x) − c2)
2/σ2

2 .
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Combinatorial issues

I Approach:

min
`:Ω→{1,...,L}

∫

Ω
s(`(x), x)dx

︸ ︷︷ ︸
local data fidelity

+ J(`)
︸︷︷︸

regularizer

I This is a combinatorial problem – optimization is hard!
I No gradient, Hessian → no gradient descent, Newton, no simple

optimality conditions
I For n pixels we would have to test all possible Ln assignments

I Idea: Can we extend (“relax”) the problem to a larger set of functions
and make it convex?
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Relaxation example

I Simple combinatorial optimization problem:

min
x∈{1,2,3}

f (x), f (1) = 2, f (2) = 1, f (3) = 3.

I We can write this as

min
x∈R

g(x), g(x) =






2, x = 1,

1, x = 2

3, x = 3

+∞, otherwise.

I This g is not convex (and not even finite everywhere)! We would like
to find some convex function h with h(x) = g(x) if x ∈ {1, 2, 3}.

I This is not a unique problem, but if we some choices are better – we
do not want to create additional minimizers!
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Convex envelope

Definition (Legendre-Fenchel Transform)

Let f : Rn → R̄, then

f ∗ : Rn → R̄,

f ∗(v) := sup
x∈Rn

{〈v , x〉 − f (x)}

is the “conjugate to f ”. The mapping f 7→ f ∗ is the “Legendre-Fenchel
transform”. The function f ∗∗ = (f ∗)∗ is the “biconjugate” of f .

Theorem (Convex envelope)

Assume f : Rn → R̄ and assume that the largest convex function g with
g 6 f is proper. Then the biconjugate f ∗∗ is the largest convex (lower
semi-continuous) function smaller or equal to f .
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Relaxation example

I Example:

g(x) =






2, x = 1,

1, x = 2

3, x = 3

+∞, otherwise.

g∗(y) = sup
x∈R

{xy − g(x)} = max{y − 2, 2y − 1, 3y − 3},

For a given slope y , the affine function

xy − g∗(y)

is below g and touches g from below.
I The biconjugate

g∗∗(x) = sup
y∈R

{yx − g∗(x)}

is the pointwise supremum of all affine functions that touch g from
below.
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Relaxation

0 1 2 3 4
0

1

2

3

4

5

6

J. Lellmann – Variational image restoration and segmentation 59



Relaxation

0 1 2 3 4
0

1

2

3

4

5

6

J. Lellmann – Variational image restoration and segmentation 59
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Relaxation

I Minimizing g∗∗ we get (in this simple case) the same minimizer as
when solving the original combinatorial problem! But we can now use
continuous optimization methods, for example using conic
programming.

0 1 2 3 4
0

1

2

3

4

5

6

I The biconjugate approach allows to systematically compute the
“best” relaxation.

I Not all energies can be exactly (“tightly”) relaxed like this!
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Relaxation – Multi-Class Labeling

I It is possible to relax u : Ω → {1, . . . , L} to u : Ω → R, but there is a
better way:

I Multi-class relaxation: [Lie et al. 06, Zach et al. 08, Lellmann et al. 09, Pock et al. 09]

I Embed labels into RL as E := {e1, . . . , eL}, relax integrality
constraint to the unit simplex:

ΔL := {x ∈ RL|x > 0,
∑

i

xi = 1} = conv E ,

min
u:Ω→ΔL

f (u), f (u) :=

∫

Ω
〈u(x), s(x)〉dx +

∫

Ω
Ψ(Du)

with s(x)i = s(i , x).
I The data term becomes linear!
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Model – Envelope Relaxation

I We want to implement a length-based regularization: J(`) penalizes
the boundary length multiplied by an interaction potential d(i , j):

I How to extend J to all functions u : Ω → ΔL?
I We know what the value of J(`) should be whenever u corresponds to

some `, i.e., u(x) = e`(x). It is possible to show that
∫

Ω
Ψ(Du) =

∫

Ju

Ψ((e i − e j)ν>),

where Ju is the jump set, i and j are the labels on both sides of the
jump, and ν is the normal of the boundary. We can set
Ψ((e i − e j)ν>) = d(i , j) to get the length-based regularization, but it
is only defined if all gradients Du of u have this particular form.
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Relaxation

I We construct a regularizer of the form

J(u) =

∫

Ω
Ψ(Du).

The requirements are:
I Ψ((e i − e j)ν>) = ‖ν‖d(i , j)
I Ψ (and therefore J) should be convex (and lower semi-continuous)
I Ψ should not introduce additional minimizers if possible

I Use the biconjugate!

J(u) =

∫

Ω
Ψ∗∗(Du),

where

Ψ(M) =

{
‖ν‖d(i , j), if M = (e i − e j)ν>,

+∞, otherwise.
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Model – Envelope Relaxation

I Following this through, we get the following:

I J(u) implicitly defined as local envelope for given d
[ChambolleCremersPock08,LellmannSchnoerr10]

J(u) := sup
v∈D

∫

Ω
〈u, Div v〉 =

∫

Ω
σDloc

(Du)
︸ ︷︷ ︸

Ψ(Du)

,

D := {v ∈ (C∞
c )d×L|v(x) ∈ Dloc ∀x ∈ Ω} ,

Dloc := {(v1, . . . , vL) ∈ Rd×L|‖v i − v j‖2 6 d(i , j) ∀i , j} .

I It is also possible to use simpler but easier relaxations, e.g.,

J(u) =

∫

Ω
‖Du‖F ,

with the Frobenius norm ‖A‖F =
(∑

i ,j A2
ij

)1/2
.
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Histogram-based segmentation
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Histogram-based segmentation
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Histogram-based segmentation
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Overview

Numerical solution – CVX
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Model – Rounding

I Fractional solutions may occur:

I This is the cost that we pay for solving the easier relaxed problem

I Will generally happen if there is more than one solution
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Rounding – Generalized Coarea Formula

I Two-class case: Generalized coarea formula [Strang83, ChanEsedogluNikolova06, Zach

et al. 09, Olsson et al. 09]

f (u) =

∫ 1

0
f (ūγ)dγ , ūγ :=

{
e1, u1(x) > γ,
e2, u1(x) 6 γ.

I Also: Choquet integral, Lovász extension, levelable function,...

I Consequence: C = 1, global integral minimizer for a.e. γ! Why? If
not, then

∫ 1

0
f (ū∗

γ)dγ >

∫ 1

0
f (u∗

E)dγ = f (u∗
E) > f (u∗) =

∫ 1

0
f (ū∗

γ)dγ,

which is a contradiction to the coarea formula.

I Multi-class generalizations are possible, but we only get suboptimal
solutions.
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Rounding – Generalized Coarea Formula
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