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Overview

Variational methods in image processing



Model
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Model

Problem formulation

Given data /, find the (image-)information u so that
I = T(u)+n,

where T is the “forward model” describing how the measurements [ are
generated from v, and n is a random variable modelling the noise.
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Reconstruction

Difficulties

In many applications, reconstructing u from / is

» not unique (T “forgets” data),
> not stable (small errors in | — large error in u)

» not deterministic due to the random noise n

R. Hocking J. Acosta-Cabronero
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What is a “typical” image?
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Prior knowledge

Variational method

We reconstruct the (image-) information u from the data / by minimizing
an energy

min { D(T(u);l) + R(u) }
@ N——— S~~~

data term, compatibility regularizer, prior knowledge
with measurements f (problem specific)

Advantages:

» Intuitive modeling by specifying properties of desired output
> Often statistical motivation, e.g. Maximum A Posteriori-estimate

» Modularity and reusability of individual components

SOSALTN Gy
“»
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Strategies for building regularisers
Trade-offs

model complexity vs. tractability/computability

local minimizers vs. global minimizers

Top-down approach Bottom-up approach

» Combine simple,
well-understood components
with adaptivity and
relaxation

» Advantages:

» mathematical analysis

» global minimization
» Disadavantages:

» much less specific

» Difficult physical/biological
models
» Advantages:
> very specific
» model parameters contain
addition information
» Disadvantages:
» Optimization is difficult
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Overview

Convex Optimization



Extended real valued-functions

In the literature, optimization problems are commonly formulated using an
objective function fy : R" — R and constraint functions

fi,...,fn:R" =R, eg,
in fc .t. C
min fo(x) s.t. xe€C,
C={xeR"fi(x)<0,i=1,...,m}.
By allowing +00 as the value of the objective function we can rewrite this

in a very compact form:

W

where f : R" — R U {400}, with the definition x € C < f(x) = +oc.
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Extended real-valued calculus

Definition (extended real line)

We define R := R U {+00, —co} with the rules:
1. ot+c=00, —-+c=-x forall ceR,
2.0-00=0, 0:(—00)=0,
3. infR=supl) = —co, inf) =supR = +oc.
4

. 400 — 00 = —00 4 00 = +0o0 (sometimes; careful:
—00 = Moo — 00) # Aoo — oo = 0 if A < 0)

Definition (indicator function)

For C C R", denote

0, x e C,

dc :R" - R, dc(x) ::{ too, x¢C.
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Constrained minimization

Example (constrained minimization via addition of indicator function)

Assume f : R" - R, C CR", C # (. Then

x" minimizes f over C < x’ minimizes f + d¢ over R".

UNIVERSITY OF
CAMBRIDGE J. Lellmann — Variational image restoration and segmentation 11



Argmin, domain, proper

Definition (argmin, effective domain, proper)

For f : R" — R, denote

1.

2.

dom f := {x € R"|f(x) < o0}

ro min f e 0, f=+4o0, (set of
ABMINT = (x e RF(x) = inff}, f<+Hoo. o0 °
minimizers/optimal solutions)

fis “proper’ :& dom f # ) and f(x) > —ocoVx € R” (i.e., f # +00
and f > —o0).
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Definition (convex sets and functions)

1. f:R" > R is “convex’ :&
f(L=—7)x+71y) <(1—-7)f(x)+7f(y) Vx,y e R", 7€ (0,1).

2. CCR"is “convex” :& dc is
convexs (L—7)x+717y € C Vx,ye C,7 €(0,1).

3. f:R" — R is “strictly convex’ :< f convex and the inequality holds
strictly for all x # y with f(x),f(y) € R and for all 7 € (0, 1).
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Global optimality

Theorem (global optimality)

Assume f : R" — R is convex. Then
1. argmin f is convex.
2. x is a local minimizer of f = x is a global minimizer of f.

3. f strictly convex and proper = f has at most one global minimizer.
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Convexity

R™ is convex,

{x € R"|x > 0} is convex,

{x € R"|||x|l2 < 1} is convex,

{x € R"|||x|l2 < 1,x # 0} is not convex,
the half-spaces {x|a’x + b > 0} are convex,

e & > W =

f(x) = a'x + b is convex (inequality holds as an equality) but not
strictly convex,

=

f(x) = ||x||% is strictly convex,

8. f(x) = ||x]||2 is convex but not strictly convex.
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Convex functions

Theorem (derivative tests)

Assume C C R" is open and convex, and f : C — R is differentiable.
Then the following conditions are equivalent:

1. f is [strictly] convex,
2. f(x)+ (y — x,Vf(x)) < f(y) forall x,y € C [and < f(y) if x # y],
3. V2f(x) is positive semidefinite for all x € C.

If V2f is positive definite, then f is strictly convex (but not the other way).
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Convexity

Proposition (operations that preserve convexity)

Let T be an arbitrary index set. Then
1. fj,i € T convex = f(x) := sup;c7 fi(x) is convex,
2. fi,i € T strictly convex, T finite = f(x) := sup;c7 fi(x) strictly
convex,
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Convex calculus

1. (nonnegative linear combination) Assume fy, ..., f, : R" — R are
convex, Ai,...,Am = 0. Then f := " \if; is convex. If at least
one of the f; with A; > 0 is strictly convex, then f is strictly convex.

2. (linear composition) Assume f : R™ — R is convex, A € R™", and
b e R™. Then

g(x) = f(Ax+0b)

IS convex.
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Overview

How to build a regularizer



Tikhonov regularization

» A standard assumption is that images are smooth in some way, i.e.,
they do not oscillate too much.

» This means that the gradient will generally be small, except at
boundaries

» — penalize the norm of the gradient!

Example (Tikhonov regularization for denoising)

Given [ : Q2 — R, find

min_ £(u) := /||u—/|| dx+)\/ IV u|2dx.
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Tikhonov regularization — numerical solution

Example (Tikhonov regularization for denoising)

Given | : Q — R, find

min f(u /Hu—IH dx—i—)\/ |V ul|>dx.

Example (Tikhonov discretized problem)

Given | € R”, find

min f(u) = EZ —l,-)2+)\Z||G,-u||§
i=1

R” 2
ue —

= jW—H@+MWﬂ%

20
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Tikhonov regularization — numerical solution

Example (Tikhonov discretized problem)

. 1
min F(u) = lu— 11 + Al Gul}

Solving the Tikhonov problem

The discretized energy f is convex (and even strictly convex). Therefore
any local minimizer is a global minimizer. We know from Fermat’s
principle that for differentiable functions f : R” — R, any local minimizer
u* € R" of f must satisfy

Vi(u*)=0.
This leads to a sparse linear equation system which can be solved fast:
u—14+XG6"Gu=0 = (d+XG ' Glu=1.
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Tikhonov regularization
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Tikhonov regularization
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Total variation

» Tikhonov regularization removes edges — why? The quadratic
regularizer makes continuous small change cheaper than sudden big
changes with the same height.

» — Change the exponent!

Example (TV regularization for denoising, Rudin-Osher-Fatemi)
Given | : Q — R, find

min_f(u /Hu—l||2dx+)\/HDuH
u:Q—R

= TV(u)

Remark: For a correct definition in the function space, the gradient Vu
has been replaced by a “distributional gradient” Du, but for the discretized
problem it generally does not make a difference.
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TV regularization
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TV regularization
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TV regularization
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Total variation

Motivation: We would like to define something like

flu) = /Q IV u(x) 20x, (1)

but this needs u to be differentiable. How to do it for non-differentiable u?

For u: Q — R, the total variation (TV) of u is defined as

TV(u) = sup /(u, Div v)dx, (2)
vECL(Q,RM),||v]|eo<1 /2

where Div v = Oy, vi + ... + Ox, Vi, and for v € C(Q,R"),

[Vllo = sup[lv(x)]l2-
x€Q
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Geometric properties

For characteristic functions, the total variation is just the length of the
boundary of the underlying set (compare the meaning in 1D):

Assume A C Q is a set so that its boundary is sufficiently smooth and
satisfies Len(Q2 N 0A) < oo. Define

1, x€eA,
L4l = {o x ¢ A

Then
TV(1a) = Len(2nN0A).

Total variation can therefore be seen as a “geometric” regularizer that
penalizes the length of the jump set.
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CAMBRIDGE J. Lellmann — Variational image restoration and segmentation 26



Overview

How to solve the discretized problem?



TV is non-smooth

Example (TV regularization for denoising)

; 1
min_f(u) = 5/ |u— /||2dx+)\/ || Du||2.
: Q Q

Example (TV discretized problem)
Given / € R”, find

. 1 n n
min f(u) = 5Z(u,-_/,-)2+AZ||G,-U\|2
=1l

ueRn
i=1

The energy f is convex but not differentiable! This means we cannot
simply use Fermat's principle but have to use specialized non-smooth
convex optimization methods based on primal-dual or conic programming
formulations.
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Linear programs

Many solvers for non-differentiable convex problems require the problem to

be rewritten in a standard form. A classical form ist the Linear Program
(LP):

Definition (Linear Program, LP)
Force R", be R™ A e R™" solve

inf c'x
x€ERn
s.t. Ax > b,

where the inequality is meant element-wise.
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Linear programs

This is surprisingly powerful:

min|x3 — x| st. x3=-1,%>0
X
~miny sty 2> |x—xel,x > -1x < -1,x >0,
X’.y
~miny st y>x3—X,y =2x—x1,x1 = —1,—x3 > 1,x >0,
X7.y
and finally
-1 1 1 0
X1 1 -1 1 X1 0
min , (0,0,1) [ x2 | st 1 0 0 x | > -1
(x1,%2,y)ER \—F—’ y -1 0 0 y 1
0 1 0 0
X X
~~ 2 SN———
A b
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Cones

Many image processing problems cannot be written in LP form. However
we would still like to keep a similar standard form. The solution is to
generalize what “>" means in the Ax > b constraint.

Definition (cone)

K CR" “cone” :&
0€eK, AXxEK VYxe K, A>0.
Note that cones can also be nonconvex, such as the cone

K = (Rxo x {0}) U ({0} x Rxo).
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Generalized inequalities

Proposition (generalized inequalities)

For a closed convex cone K C R" we define the ‘“generalized inequality”
xXZ2ky & x—yeK.

This “behaves” like the usual > relation:

1. x >k x (reflexivity),
XZK Y, Yy 2Kk Z = X 2k z (transitivity),
XZky= -y 2k —xandx 2k y,A 2 0= Ax 2k Ay,
xzky, X' Zky = x+x' 2k y+y,

oA WwoN

CIfxK — x and y* — y with x¥ > y* for all k €N, then x >k y.

If “>" is a relation on R" satisfying 1.-5., then it can be represented as
>k for a closed convex cone.
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Conic programs

Definition (conic program)

For any closed, convex cone K C R™, a matrix A € R™*" and vectors
c € R", b € R™, we define the “conic program” or “conic problem” (CP)

infc' x
X

s.t. Ax >k b.

Many commercial and free “out of the box" solvers require the problem to
be reformulated as a conic problem or similar standard form!
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Conic programs

Example (standard cone)

The “standard cone”
K = {xeR"xq,...,x, >0}

is a closed, convex cone. The associated conic program is the “linear
program” (LP)

infc'x
X

s.t. Ax > b.
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Second- r cone

Example (second-order cone)

The “second-order cone” (also called “Lorentz cone”, “ice-cream cone")
SOCP .
K = {XE]R”|X,,> x12+...-|—x3_1}

is a pointed, closed, convex cone. Conic programs with

K = KEIOCP X ... X K,?IOCP are called “second-order conic programs”
(SOCP).
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Second-order cone programs

mins, |[|x]2 st x31+x > 1.
This can be rewritten as a second-order cone program:

min,, y

st. y2|xl2,x+x—-120.
X X
<:>ld(y)2K3soc:P0, (1 1 0)(y)2Klsocp(1).

The LP constraints (inequalities) can also be written as a simple SOCP
constraint, but they are usually left in linear form to make notation simpler.
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Total Variation as SOCP

» We would like to reformulate the total variation energy

1 n n

min f(u) = = ui— i+ A Giu

ueR"() 22’1 :|+ ZH ,||2
i=1 i=1

in conic program form (removing the square in the data term makes it

simpler — quadratic data terms require either so-called semidefinite

cones or conic programs with quadratic objective).

UNIVERSITY OF
CAMBRIDGE J. Lellmann — Variational image restoration and segmentation 36



Total Variation as SOCP

» We would like to reformulate the total variation energy

n
min = —Z lui = 1] + A; |Giull2
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Total Variation as SOCP

» Step 1: introduce auxiliary variables for the data term:

1 n n
min = E Si+ A E | Giul|2
u€R" seRn 2 — —

s.t. sizlui—1Fhl, i=1,...,n.
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Total Variation as SOCP

» Step 2: introduce auxiliary variables for the regularizer:

min
ueR" seR" teR"

s.t.
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Total Variation as SOCP

» Step 2: introduce auxiliary variables for the regularizer:

min
ucR" seR" teR"

s.t.

n n
ey

i=1 i=1
sizlui—1h, i=1,...,n,
ti = ||Glu||27 = 17 ,n

The objective function is now linear, and the constraints have
second-order conic (SOCP) form. We may have to introduce more
variables to bring the problem into the specific form that the solver

requires.
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Higher-order Total Variation

» Total variation keeps edges but introduces “stair-casing” artifacts on
continuous gradients

> ldea: Penalizing the first derivative keeps the function piecewise
constant. Penalizing the second derivatives should keep the function
piecewise linear:

. . 1 2 2
i 7w =5 [ u=1iPaxea [ 0%l
S

=:TV2(u)

where D? is the (generalized) Hessian of u.
» We can also use third- or even higher-order derivatives D¥u.

» Problem: we cannot have jumps again!
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Infimal convolution

Definition (Infimal convolution)

For functions fi,. .., f, : X — R for any set X, we define the infimal

convolution /inf-convolution (A0---0f,) : X — R as

(AO---Of)(u) = inf (A(ZY) + ... + fi(29)).

zy, ., zk Z . 4 zk=u
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Infimal convolution

Definition (Infimal convolution)

For functions fi,...,f, : X — R for any set X, we define the infimal
convolution /inf-convolution (A0 ---0Of,) : X — R as

(AO---Ofi)(u) = inf (A(2Y) + ...+ fi(29)).

zl,...,zk,zl+...+zk:u

Example (ROF is inf-convolution)

.1 2
UEER5/§2||U_I‘| dx+)\/Q||DuH2dx.
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Infimal convolution

Definition (Infimal convolution)

For functions fi,...,f, : X — R for any set X, we define the infimal
convolution /inf-convolution (A0 ---0Of,) : X — R as

(AO---Ofi)(u) = inf (A(2Y) + ...+ fi(29)).

zl,...,zk,zl+...+zk:u

Example (ROF is inf-convolution)

1
min —/ ||W||2dx—|—)\/ ||IDul|2dx .
uw:Q—R, u+w=/ 2 Q Q

fi(w) fa(u)

— “Cartoon-texture decomposition”

UNIVERSITY OF
¥ CAMBRIDGE J. Lellmann — Variational image restoration and segmentation 38



Infimal convolution

» We can use infimal convolution to combine first- and second-order

regularizers!

Example (TV — TV? regularization)

inf I{%HWH%—{—)\TV(u)—i—,uTVQ(v)}.

u,v,w,u+v+w=

» This naturally splits the image into parts

» With small “Gaussian” energy (w)
» With few nonzero gradient/piecewise constant (u)
» With few nonzero second derivatives/piecewise affine, but without

jumps (v)
UNIVERSITY OF
CAMBRIDGE J. Lellmann — Variational image restoration and segmentation 39



Total Generalized Variation

» We can also split the gradient instead:

Example (Total Generalized Variation, cascading formulation)

1
T |
oo, (Gl A [ 4 [ wle)

Classically & is the symmetrized gradient, 2Dw + 3(Dw)T.
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Overview

Multichannel images



» What if we have u: Q — R™ instead?

» Natural extension:

i ) —I(x D
Jain 5 et = 1691+ 3 [ 1Dl

» Which norm for || - [|4? Du(x) € R™™ (in the smooth case) — need
a matrix norm!

» Common choices: For A= (a!,... a™m) € R™M,
|All4 = llatlla + -+ ]]a"|2 channel-by-channel
mon 1/2
AL = { DD (a)? Frobenius norm
i=1 j=1

» Both representable as an SOCP!
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Singular value-based norms

> ldea: A symmetric matrix A € R™" can be written in the form
A=PIPT,

where P is orthogonal (PP = PTP = Id) and ¥ = diag(o1,...,0n)
is a diagonal matrix with the eigenvalues 01 > 02 > ... > 0, of A.

> We could use norms derived from the eigenvalues, for example

A4 = |o1] + ...+ |oal, nuclear norm

HAH# = ."113X oil, spectral norm
i=1,...,n

Al = (|loalP + -+ + |on|P)HP Schatten-p-norm

» But: For u:Q — R™, we usually have Vu(x) € R™™, which is
neither quadratic nor symmetric.
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Singular values

Proposition (Singular Value Decomposition)

Every matrix A € R"™™ has a singular value decomposition (SVD) of the
form
A=UZV',

where U € R™" 'V € R™™M U and V are unitary matrices, i.e.,

UTU = Idyyn, VTV = Idmym, and & € R™™ s 3 matrix with the
unique (!) singular values o1 > 03 > -+ > 0, = 0 on the diagonal, and
zero everywhere else.
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Example (SVD )

1 2 9.88 0
A= 2 4 | =UuzVvT, = 0 272 |,
8 4 0 0

020 040 —0.89
U=| 040 080 045 ,v:(

0.83 —0.56)
0.90 —-0.44 0

0.56  0.83
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Example (SVD II)

1 2 10.25
A= 2 4 |=UzV', I= 0
4 8 0
0.22 —0.97 -0.11
0.45
U= | 044 0 090 |,V= ( by

0.87 0.24 -—-0.42
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SVvD

Example (SVD II)

1 2 10.25 0
A= 2 4 | =vuzVv', = 00 |,
4 8 00
022 —0.97 —0.11
U=| 044 0 090 |, v= ( 0.45 _0'89>

0.87 024 -0.42 0.89 0.45

» The number of non-zero singular values is the same as the rank of the
matrix.

» We can use regularizers based on the singular values, for example the
nuclear norm, Schatten p-norms etc.
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Nuclear norm

Definition (nuclear norm)

For A € R"™™ the nuclear norm is defined as
[All« = loa| + - - + |oal,

where 01 > 02 > -+ > 0, are the singular values of A.

Example (Nuclear norm TV/low rank regularization)
i 1/||u l||2dx+)\/ || Du||
min_ = - e
u:Q—R 2 Q e Q
How can we get this into a standard form? It is not an SOCP!
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Semidefinite cone

Definition
The “positive semidefinite cone”

KPP {X € R™"| X symmetric positive semidefinite}
is a closed, convex cone. Conic programs with K = K,?lDP X ... X K,?IDP
are called “semidefinite programs” (SDP):

infycrn c'x
s.t. Ax — b € K.

Here A is a linear operator A : R" — RMXM x ... x R"*M and
b e RMXM x ... x R"*M QOften x and ¢ are also written as matrices
X, C € R™" with the inner product (C, X) := >, ; C;Xj; replacing c'x.
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Nuclear norm as SDP

For M € R"™ ™ the nuclear norm can be written in SDP form:

M. = loa] +---+on|

1 1
= min —trB + —trC
BER*n CERmxm 2 2

B M " o
st T C positive semidefinite.

This can be proven rigorously using the SVD of A, but as a motivation
consider the case n =1, i.e., M = a € R: Then the semidefiniteness
means b >0, ¢ >0, and bc —a®> > 0, i.e., bc > a®>. We compute the
minimum of %(b—k c) subject to bc > a®. The latter will hold with
equality, thus by substitution and optimality conditions b = ¢ = |a|.
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Overview

Segmentation and Relaxation



Segmentation

» In many interesting applications the range is discrete:
In every x € Q, a discrete decision has to be made.
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Segmentation
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Motivation — Multiclass Labeling

» Applications: Segmentation, denoising, 3D reconstruction, depth
from stereo, inpainting, photo montage, optical flow,...
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Motivation — Problem

> Finite labeling problem:

» Partition image domain Q into L regions
» Discrete decision at each point in continuous domain 2

» Variational Approach:

£:Q—{1,...,L}

min / s((x), x)dx+ J(¢)
Q ~

— regularizer
local data fidelity

» Why this form?
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Bayesian model

» Assume the domain Q consists of a finite set of points (pixels) x € Q
and we have a local probabilistic model for the observation
I : Q — R™ given the ground-truth (true) segmentation ¢(x),

P(I|6) = T] PU)Ie(x

x€eQ

> Classic example: Two classes, Gaussian distribution:

PUI(x)|l(x) =1) = N(I(x);c1,0%) ~ e 1

PUI(X)|l(x) =2) = NU(x);c,03)~e 7
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Bayesian model

> Given the observation /, we would like to find the segmentation ¢ that
maximizes the “a posteriori probability”. Using the Bayes rule:
P(e, 1) _ P(IO)P(L)
P(|1) = =
max P = B Z0)
» The P(/) part is not relevant, and instead of maximizing P(¢|l) we
can find ¢ by minimizing — log P(¢|/):

mein —log(P(/|0)P(¢)) = — log P(I|¢) — log P(¢)

= {Z —log P(/(x)\z(x))} — log P(¢)

&Y g J(0)

~ fq s(£(x),x)dx

» For the Gaussian model:
s(1,x) = (I(x) — a)?/o3, s(2,x) = (I(x) — ©2)*/03.
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Combinatorial issues

» Approach:

i d /
z:Q_>n{“1r,]...,L} /Q S(U(x), x)ebx + i(,.)«
[ —

. regularizer
local data fidelity

» This is a combinatorial problem — optimization is hard!
» No gradient, Hessian — no gradient descent, Newton, no simple
optimality conditions
» For n pixels we would have to test all possible L" assignments
» ldea: Can we extend (“relax") the problem to a larger set of functions
and make it convex?
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Relaxation example

» Simple combinatorial optimization problem:

in f f(1) = 2. f(2) = 1, f(3) = 3.
U (x), f(1)=2,f(2)=1,f3)=3

» We can write this as
2, x=1,

i 1, x =2
min , =
ming(x), g(x) 3. x=3

400, otherwise.

» This g is not convex (and not even finite everywhere)! We would like
to find some convex function h with h(x) = g(x) if x € {1,2,3}.

» This is not a unique problem, but if we some choices are better — we
do not want to create additional minimizers!
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Convex envelope

Definition (Legendre-Fenchel Transform)

Let f: R" — R, then

f*:R" - R,
Fr(v) = XSéU}gﬁ(%X) — ()}

is the “conjugate to . The mapping f — f* is the “Legendre-Fenchel
transform”. The function f** = (f*)* is the "biconjugate” of f.

Theorem (Convex envelope)

Assume f : R" — R and assume that the largest convex function g with
g < f is proper. Then the biconjugate f** is the largest convex (lower
semi-continuous) function smaller or equal to f.
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Relaxation example

> Example:
2, x =1,
1, x =2
X) =
g(x) 3, 3

400, otherwise.
g'(y) = sup {xy —g(x)} = max{y — 2,2y — 1,3y — 3},
For a given slope y, the affine function
xy —g"(y)
is below g and touches g from below.

» The biconjugate

g™ (x) = sup{yx — g"(x)}
yeR
is the pointwise supremum of all affine functions that touch g from

below.
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Relaxation
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Relaxation

» Minimizing g** we get (in this simple case) the same minimizer as
when solving the original combinatorial problem! But we can now use
continuous optimization methods, for example using conic

programming.

» The biconjugate approach allows to systematically compute the
“best” relaxation.
» Not all energies can be exactly (“tightly”) relaxed like this!
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Relaxation — Multi-Class Labeling

» It is possible to relax u: Q — {1,...,L} to u: Q — R, but there is a
better way:
> MUIti-CIaSS reIaXation: [Lie et al. 06, Zach et al. 08, Lellmann et al. 09, Pock et al. 09]

u(z) = (0,1,0)

2 /u_’_\h.

2 @ A CR!

» Embed labels into Rt as £ := {e!,..., el}, relax integrality
constraint to the unit simplex:

A ={xe RL]x > O,Zx,- =1} =convé,

min f(u), f(u) ::/(u(x),s(x))dx—l—/ W(Du)
uQ—A, Q Q

with s(x); = s(i, x).
» The data term becomes linear!
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Model — Envelope Relaxation

» We want to implement a length-based regularization: J(¢) penalizes
the boundary length multiplied by an interaction potential d(i,J):

» How to extend J to all functions u: Q — A7
» We know what the value of J(¢) should be whenever u corresponds to
some /, i.e., u(x) = /™) It is possible to show that

/Qw(ou):/ju w((el — el ),

where 7, is the jump set, i and j are the labels on both sides of the
jump, and v is the normal of the boundary. We can set

V((e' —e)v) = d(i,]) to get the length-based regularization, but it
is only defined if all gradients Du of u have this particular form.
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Relaxation

» We construct a regularizer of the form

ﬂ@:éww@

The requirements are:
> V(e —e)T) = [lv]d(i,))
» W (and therefore J) should be convex (and lower semi-continuous)
» W should not introduce additional minimizers if possible

> Use the biconjugate!

A@:/wwmm

Q

where _ .
lvlld(i,j), ifM=(e'—e)r,

400, otherwise.

V(M) = {
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Model — Envelope Relaxation

> Following this through, we get the following:
» J(u) implicitly defined as local envelope for given d

[ChambolleCremersPock08,LellmannSchnoerr10]

J(u) = sup/(u, Divv>:/aploc(Du),
veD JQ QN
V(Du)
D = {ve(C®)"v(x) € D Vx € Q},
Dioc = {(v,...,vH) € RV = VV[|> < d(i,)) Vi, j}

> |t is also possible to use simpler but easier relaxations, e.g.,

J(u) = /Q | Dyl

| _ 1/2
with the Frobenius norm [|A||f = (Zu Ai)
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Histogram-based segmentation
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Histogram-based segmentation
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Overview

Numerical solution — CVX



Variational image restoration and segmentation

Jan Lellmann

Cambridge Image Analysis
Department for Applied Mathematics and Theoretical Physics
Cambridge University

Granada, May 2015
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Model — Rounding

» Fractional solutions may occur:

» This is the cost that we pay for solving the easier relaxed problem

» Will generally happen if there is more than one solution
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Rounding — Generalized Coarea Formula

» Two-class case: Generalized coarea formula (strangss, ChanEsedogluNikolova06, Zach

et al. 09, Olsson et al. 09]
1 1
_ _ er, u(x)>7,
flu) = f(u,)dy, b, :=
W = [ @ o ={ 5 w927

» Also: Choquet integral, Lovdsz extension, levelable function,...

> Consequence: C =1, global integral minimizer for a.e. y! Why? If
not, then

1 1 1
/0 F(a)dy > /0 Fup)dy = F(ug) > F(u") = /0 F(@)dn,

which is a contradiction to the coarea formula.

» Multi-class generalizations are possible, but we only get suboptimal
solutions.
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Rounding — Generalized Coarea Formula

UNIVERSITY OF
CAMBRIDGE J. Lellmann — Variational image restoration and segmentation 69



Rounding — Generalized Coarea Formula

\/

UNIVERSITY OF
CAMBRIDGE J. Lellmann — Variational image restoration and segmentation 69



Rounding — Generalized Coarea Formula

\/

UNIVERSITY OF
CAMBRIDGE J. Lellmann — Variational image restoration and segmentation 69



Rounding — Generalized Coarea Formula

A

f(ag)

'
/\ /\ /\- f(ug)

\/
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Rounding — Generalized Coarea Formula

Coarea!

E f(ay) = f(u) < f(ug)

\/
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Variational image restoration and segmentation
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