Variational image restoration and segmentation

Jan Lellmann
Cambridge Image Analysis
Department for Applied Mathematics and Theoretical Physics
Cambridge University

Granada, May 2015

Cambridge Image Analysis (CIA)

1 PI, 5 PostDocs, 6 PhD, 3 Master
www.damtp.cam.ac.uk/research/cia/ www.images.group.cam.ac.uk

Overview

Variational methods in image processing

Model

Model

Model

Problem formulation

Given data I, find the (image-)information u so that

$$
I=T(u)+n,
$$

where T is the "forward model" describing how the measurements I are generated from u, and n is a random variable modelling the noise.

Reconstruction

Difficulties

In many applications, reconstructing u from $/$ is

- not unique (T "forgets" data),
- not stable (small errors in $I \rightarrow$ large error in u)
- not deterministic due to the random noise n

R. Hocking

J. Acosta-Cabronero

What is a "typical" image?

Prior knowledge

Variational method

We reconstruct the (image-) information u from the data I by minimizing an energy

Advantages:

- Intuitive modeling by specifying properties of desired output
- Often statistical motivation, e.g. Maximum A Posteriori-estimate
- Modularity and reusability of individual components

J. Lellmann - Variational image restoration and segmentation

Strategies for building regularisers

Trade-offs

model complexity vs. tractability/computability local minimizers vs. global minimizers

Top-down approach

- Difficult physical/biological models
- Advantages:
- very specific
- model parameters contain addition information
- Disadvantages:
- Optimization is difficult

Bottom-up approach

- Combine simple, well-understood components with adaptivity and relaxation
- Advantages:
- mathematical analysis
- global minimization
- Disadavantages:
- much less specific

Strategies for building regularisers

Trade-offs

model complexity vs. tractability/computability local minimizers vs. global minimizers

Top-down approach

- Difficult physical/biological models
- Advantages:
- very specific
- model parameters contain addition information
- Disadvantages:
- Optimization is difficult

Bottom-up approach

- Combine simple, well-understood components with adaptivity and relaxation
- Advantages:
- mathematical analysis
- global minimization
- Disadavantages:
- much less specific

Overview

Convex Optimization

Extended real valued-functions

In the literature, optimization problems are commonly formulated using an objective function $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and constraint functions $f_{1}, \ldots, f_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, e.g.,

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} f_{0}(x) \quad \text { s.t. } \quad x \in C, \\
& C=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \leqslant 0, i=1, \ldots, m\right\} .
\end{aligned}
$$

By allowing $+\infty$ as the value of the objective function we can rewrite this in a very compact form:

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$, with the definition $x \notin C \Leftrightarrow f(x)=+\infty$.

Extended real-valued calculus

Definition (extended real line)

We define $\overline{\mathbb{R}}:=\mathbb{R} \cup\{+\infty,-\infty\}$ with the rules:

1. $\infty+c=\infty, \quad-\infty+c=-\infty \quad$ for all $c \in \mathbb{R}$,
2. $0 \cdot \infty=0, \quad 0 \cdot(-\infty)=0$,
3. $\inf \mathbb{R}=\sup \emptyset=-\infty, \quad \inf \emptyset=\sup \mathbb{R}=+\infty$.
4. $+\infty-\infty=-\infty+\infty=+\infty$ (sometimes; careful:
$-\infty=\lambda(\infty-\infty) \neq \lambda \infty-\lambda \infty=\infty$ if $\lambda<0)$

Definition (indicator function)

For $C \subseteq \mathbb{R}^{n}$, denote

$$
\delta_{C}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}, \quad \delta_{C}(x):= \begin{cases}0, & x \in C \\ +\infty, & x \notin C\end{cases}
$$

Constrained minimization

Example (constrained minimization via addition of indicator function)
Assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, C \subseteq \mathbb{R}^{n}, C \neq \emptyset$. Then
x^{\prime} minimizes f over $C \Leftrightarrow x^{\prime}$ minimizes $f+\delta_{C}$ over \mathbb{R}^{n}.

Argmin, domain, proper

Definition (argmin, effective domain, proper)

For $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$, denote

1. $\operatorname{dom} f:=\left\{x \in \mathbb{R}^{n} \mid f(x)<+\infty\right\}$
2. $\arg \min f:=\left\{\begin{array}{ll}\emptyset, & f \equiv+\infty, \\ \left\{x \in \mathbb{R}^{n} \mid f(x)=\inf f\right\}, & f<+\infty .\end{array}\right.$ (set of minimizers/optimal solutions)
3. f is "proper" : $\Leftrightarrow \operatorname{dom} f \neq \emptyset$ and $f(x)>-\infty \forall x \in \mathbb{R}^{n}$ (i.e., $f \neq+\infty$ and $f>-\infty)$.

Convexity

Definition (convex sets and functions)

1. $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is "convex" $: \Leftrightarrow$

$$
f((1-\tau) x+\tau y) \leqslant(1-\tau) f(x)+\tau f(y) \quad \forall x, y \in \mathbb{R}^{n}, \tau \in(0,1)
$$

2. $C \subseteq \mathbb{R}^{n}$ is "convex" $: \Leftrightarrow \delta_{C}$ is convex $\Leftrightarrow(1-\tau) x+\tau y \in C \quad \forall x, y \in C, \tau \in(0,1)$.
3. $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is "strictly convex" $: \Leftrightarrow f$ convex and the inequality holds strictly for all $x \neq y$ with $f(x), f(y) \in \mathbb{R}$ and for all $\tau \in(0,1)$.

Global optimality

Theorem (global optimality)

Assume $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is convex. Then

1. $\arg \min f$ is convex.
2. x is a local minimizer of $f \Rightarrow x$ is a global minimizer of f.
3. f strictly convex and proper $\Rightarrow f$ has at most one global minimizer.

Convexity

Example

1. \mathbb{R}^{n} is convex,
2. $\left\{x \in \mathbb{R}^{n} \mid x>0\right\}$ is convex,
3. $\left\{x \in \mathbb{R}^{n} \mid\|x\|_{2} \leqslant 1\right\}$ is convex,
4. $\left\{x \in \mathbb{R}^{n} \mid\|x\|_{2} \leqslant 1, x \neq 0\right\}$ is not convex,
5. the half-spaces $\left\{x \mid a^{\top} x+b \geqslant 0\right\}$ are convex,
6. $f(x)=a^{\top} x+b$ is convex (inequality holds as an equality) but not strictly convex,
7. $f(x)=\|x\|_{2}^{2}$ is strictly convex,
8. $f(x)=\|x\|_{2}$ is convex but not strictly convex.

Convex functions

Theorem (derivative tests)

Assume $C \subseteq \mathbb{R}^{n}$ is open and convex, and $f: C \rightarrow \mathbb{R}$ is differentiable.
Then the following conditions are equivalent:

1. f is [strictly] convex,
2. $f(x)+\langle y-x, \nabla f(x)\rangle \leqslant f(y)$ for all $x, y \in C$ [and $<f(y)$ if $x \neq y]$,
3. $\nabla^{2} f(x)$ is positive semidefinite for all $x \in C$.

If $\nabla^{2} f$ is positive definite, then f is strictly convex (but not the other way).

Convexity

Proposition (operations that preserve convexity)

Let \mathcal{I} be an arbitrary index set. Then

1. $f_{i}, i \in \mathcal{I}$ convex $\Rightarrow f(x):=\sup _{i \in \mathcal{I}} f_{i}(x)$ is convex,
2. $f_{i}, i \in \mathcal{I}$ strictly convex, \mathcal{I} finite $\Rightarrow f(x):=\sup _{i \in \mathcal{I}} f_{i}(x)$ strictly convex,

Convex calculus

Proposition

1. (nonnegative linear combination) Assume $f_{1}, \ldots, f_{m}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ are convex, $\lambda_{1}, \ldots, \lambda_{m} \geqslant 0$. Then $f:=\sum_{i=1}^{m} \lambda_{i} f_{i}$ is convex. If at least one of the f_{i} with $\lambda_{i}>0$ is strictly convex, then f is strictly convex.
2. (linear composition) Assume $f: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}$ is convex, $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^{m}$. Then

$$
g(x):=f(A x+b)
$$

is convex.

Overview

How to build a regularizer

Tikhonov regularization

- A standard assumption is that images are smooth in some way, i.e., they do not oscillate too much.
- This means that the gradient will generally be small, except at boundaries
- \rightarrow penalize the norm of the gradient!

Example (Tikhonov regularization for denoising)

Given $I: \Omega \rightarrow \mathbb{R}$, find

$$
\min _{u: \Omega \rightarrow \mathbb{R}} f(u):=\frac{1}{2} \int_{\Omega}\|u-I\|^{2} d x+\lambda \int_{\Omega}\|\nabla u\|^{2} d x
$$

Tikhonov regularization - numerical solution

Example (Tikhonov regularization for denoising)

Given $I: \Omega \rightarrow \mathbb{R}$, find

$$
\min _{u: \Omega \rightarrow \mathbb{R}} f(u):=\frac{1}{2} \int_{\Omega}\|u-I\|^{2} d x+\lambda \int_{\Omega}\|\nabla u\|^{2} d x
$$

Example (Tikhonov discretized problem)

Given $I \in \mathbb{R}^{n}$, find

$$
\begin{aligned}
\min _{u \in \mathbb{R}^{n}} f(u) & :=\frac{1}{2} \sum_{i=1}^{n}\left(u_{i}-I_{i}\right)^{2}+\lambda \sum_{i=1}^{n}\left\|G_{i} u\right\|_{2}^{2} \\
& =\frac{1}{2}\|u-l\|_{2}^{2}+\lambda\|G u\|_{2}^{2}
\end{aligned}
$$

Tikhonov regularization - numerical solution

Example (Tikhonov discretized problem)

$$
\min _{u \in \mathbb{R}^{n}} f(u)=\frac{1}{2}\|u-I\|_{2}^{2}+\lambda\|G u\|_{2}^{2}
$$

Solving the Tikhonov problem

The discretized energy f is convex (and even strictly convex). Therefore any local minimizer is a global minimizer. We know from Fermat's principle that for differentiable functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, any local minimizer $u^{*} \in \mathbb{R}^{n}$ of f must satisfy

$$
\nabla f\left(u^{*}\right)=0
$$

This leads to a sparse linear equation system which can be solved fast:

$$
u-I+\lambda G^{\top} G u=0 \quad \Rightarrow \quad\left(I d+\lambda G^{\top} G\right) u=I
$$

Tikhonov regularization

Tikhonov regularization

Total variation

- Tikhonov regularization removes edges - why? The quadratic regularizer makes continuous small change cheaper than sudden big changes with the same height.
- \rightarrow Change the exponent!

Example (TV regularization for denoising, Rudin-Osher-Fatemi)

Given $I: \Omega \rightarrow \mathbb{R}$, find

$$
\min _{u: \Omega \rightarrow \mathbb{R}} f(u):=\frac{1}{2} \int_{\Omega}\|u-I\|^{2} d x+\lambda \underbrace{\int_{\Omega}\|D u\|}_{=: T V(u)}
$$

Remark: For a correct definition in the function space, the gradient ∇u has been replaced by a "distributional gradient" $D u$, but for the discretized problem it generally does not make a difference.

TV regularization

TV regularization

TV regularization

Total variation

Motivation: We would like to define something like

$$
\begin{equation*}
f(u)=\int_{\Omega}\|\nabla u(x)\|_{2} d x \tag{1}
\end{equation*}
$$

but this needs u to be differentiable. How to do it for non-differentiable u ?

Definition

For $u: \Omega \rightarrow \mathbb{R}$, the total variation (TV) of u is defined as

$$
\begin{equation*}
\operatorname{TV}(u):=\sup _{v \in C_{c}^{1}\left(\Omega, \mathbb{R}^{n}\right),\|v\|_{\infty} \leqslant 1} \int_{\Omega}\langle u, \operatorname{Div} v\rangle d x \tag{2}
\end{equation*}
$$

where $\operatorname{Div} v=\partial_{x_{1}} v_{1}+\ldots+\partial_{x_{n}} v_{n}$, and for $v \in C_{c}^{1}\left(\Omega, \mathbb{R}^{n}\right)$,

$$
\|v\|_{\infty}=\sup _{x \in \Omega}\|v(x)\|_{2}
$$

Geometric properties

For characteristic functions, the total variation is just the length of the boundary of the underlying set (compare the meaning in 1D):

Proposition

Assume $A \subset \Omega$ is a set so that its boundary is sufficiently smooth and satisfies $\operatorname{Len}(\Omega \cap \partial A)<\infty$. Define

$$
1_{A}(x):= \begin{cases}1, & x \in A \\ 0, & x \notin A\end{cases}
$$

Then

$$
\operatorname{TV}\left(1_{A}\right)=\operatorname{Len}(\Omega \cap \partial A)
$$

Total variation can therefore be seen as a "geometric" regularizer that penalizes the length of the jump set.

Overview

How to solve the discretized problem?

TV is non-smooth

Example (TV regularization for denoising)

$$
\min _{u: \Omega \rightarrow \mathbb{R}} f(u):=\frac{1}{2} \int_{\Omega}\|u-I\|^{2} d x+\lambda \int_{\Omega}\|D u\|_{2}
$$

Example (TV discretized problem)

Given $I \in \mathbb{R}^{n}$, find

$$
\min _{u \in \mathbb{R}^{n}} f(u):=\frac{1}{2} \sum_{i=1}^{n}\left(u_{i}-l_{i}\right)^{2}+\lambda \sum_{i=1}^{n}\left\|G_{i} u\right\|_{2}
$$

The energy f is convex but not differentiable! This means we cannot simply use Fermat's principle but have to use specialized non-smooth convex optimization methods based on primal-dual or conic programming formulations.

Linear programs

Many solvers for non-differentiable convex problems require the problem to be rewritten in a standard form. A classical form ist the Linear Program (LP):
Definition (Linear Program, LP)
For $c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}$, solve

$$
\begin{aligned}
& \inf _{x \in \mathbb{R}^{n}} c^{\top} x \\
& \text { s.t. } A x \geqslant b,
\end{aligned}
$$

where the inequality is meant element-wise.

Linear programs

Example

This is surprisingly powerful：

$$
\begin{aligned}
& \min _{x}\left|x_{1}-x_{2}\right| \quad \text { s.t. } \quad x_{1}=-1, x_{2} \geqslant 0 \\
& \rightsquigarrow \min _{x, y} y \quad \text { s.t. } \quad y \geqslant\left|x_{1}-x_{2}\right|, x_{1} \geqslant-1, x_{1} \leqslant-1, x_{2} \geqslant 0, \\
& \rightsquigarrow \min _{x, y} y \quad \text { s.t. } \quad y \geqslant x_{1}-x_{2}, y \geqslant x_{2}-x_{1}, x_{1} \geqslant-1,-x_{1} \geqslant 1, x_{2} \geqslant 0,
\end{aligned}
$$

and finally

Cones

Many image processing problems cannot be written in LP form. However we would still like to keep a similar standard form. The solution is to generalize what " \geqslant " means in the $A x \geqslant b$ constraint.

Definition (cone)

$K \subseteq \mathbb{R}^{n}$ "cone" $: \Leftrightarrow$

$$
0 \in K, \quad \lambda x \in K \quad \forall x \in K, \lambda \geqslant 0
$$

Note that cones can also be nonconvex, such as the cone $K=(\mathbb{R} \geqslant 0 \times\{0\}) \cup\left(\{0\} \times \mathbb{R}_{\geqslant 0}\right)$.

Generalized inequalities

Proposition (generalized inequalities)

For a closed convex cone $K \subseteq \mathbb{R}^{n}$ we define the "generalized inequality"

$$
x \geqslant_{K} y \quad: \Leftrightarrow x-y \in K
$$

This "behaves" like the usual \geqslant relation:

1. $x \geqslant_{K} x$ (reflexivity),
2. $x \geqslant_{K} y, y \geqslant_{K} z \Rightarrow x \geqslant_{K} z$ (transitivity),
3. $x \geqslant_{K} y \Rightarrow-y \geqslant_{K}-x$ and $x \geqslant_{K} y, \lambda \geqslant_{0} \Rightarrow \lambda x \geqslant_{K} \lambda y$,
4. $x \geqslant_{K} y, x^{\prime} \geqslant_{K} y^{\prime} \Rightarrow x+x^{\prime} \geqslant_{K} y+y^{\prime}$,
5. If $x^{k} \rightarrow x$ and $y^{k} \rightarrow y$ with $x^{k} \geqslant_{K} y^{k}$ for all $k \in \mathbb{N}$, then $x \geqslant_{K} y$. If " \geqslant " is a relation on \mathbb{R}^{n} satisfying 1.-5., then it can be represented as \geqslant_{K} for a closed convex cone.

Conic programs

Definition (conic program)

For any closed, convex cone $K \subseteq \mathbb{R}^{m}$, a matrix $A \in \mathbb{R}^{m \times n}$ and vectors $c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$, we define the "conic program" or "conic problem" (CP)

$$
\begin{aligned}
& \inf _{x} c^{\top} x \\
& \text { s.t. } A x \geqslant{ }_{K} b .
\end{aligned}
$$

Many commercial and free "out of the box" solvers require the problem to be reformulated as a conic problem or similar standard form!

Conic programs

Example (standard cone)

The "standard cone"

$$
K_{n}^{\mathrm{LP}}:=\left\{x \in \mathbb{R}^{n} \mid x_{1}, \ldots, x_{n} \geqslant 0\right\}
$$

is a closed, convex cone. The associated conic program is the "linear program" (LP)

$$
\begin{aligned}
& \inf _{x} c^{\top} x \\
& \text { s.t. } A x \geqslant b .
\end{aligned}
$$

Second-order cone

Example (second-order cone)

The "second-order cone" (also called "Lorentz cone", "ice-cream cone")

$$
K_{n}^{\mathrm{SOCP}}:=\left\{x \in \mathbb{R}^{n} \mid x_{n} \geqslant \sqrt{x_{1}^{2}+\ldots+x_{n-1}^{2}}\right\}
$$

is a pointed, closed, convex cone. Conic programs with $K=K_{n_{1}}^{\mathrm{SOCP}} \times \ldots \times K_{n_{I}}^{\mathrm{SOCP}}$ are called "second-order conic programs" (SOCP).

Second-order cone programs

Example

$$
\min s_{x} \quad\|x\|_{2} \quad \text { s.t. } \quad x_{1}+x_{2} \geqslant 1 .
$$

This can be rewritten as a second-order cone program:

$$
\begin{array}{cl}
\min _{x, y} & y \\
\text { s.t. } & y \geqslant\|x\|_{2}, x_{1}+x_{2}-1 \geqslant 0 \\
& \Leftrightarrow I d\binom{x}{y} \geqslant_{K_{3}^{\text {SOCP }} 0, \quad\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right)\binom{x}{y} \geqslant_{K_{1}^{\text {SOCP }}}(1) .} .
\end{array}
$$

The LP constraints (inequalities) can also be written as a simple SOCP constraint, but they are usually left in linear form to make notation simpler.

Total Variation as SOCP

- We would like to reformulate the total variation energy

$$
\min _{u \in \mathbb{R}^{n}} f(u):=\frac{1}{2} \sum_{i=1}^{n}\left|u_{i}-l_{i}\right|+\lambda \sum_{i=1}^{n}\left\|G_{i} u\right\|_{2}
$$

in conic program form (removing the square in the data term makes it simpler - quadratic data terms require either so-called semidefinite cones or conic programs with quadratic objective).

Total Variation as SOCP

- We would like to reformulate the total variation energy

$$
\min _{u \in \mathbb{R}^{n}} \frac{1}{2} \sum_{i=1}^{n}\left|u_{i}-l_{i}\right|+\lambda \sum_{i=1}^{n}\left\|G_{i} u\right\|_{2}
$$

Total Variation as SOCP

- Step 1: introduce auxiliary variables for the data term:

$$
\begin{aligned}
\min _{u \in \mathbb{R}^{n}, s \in \mathbb{R}^{n}} & \frac{1}{2} \sum_{i=1}^{n} s_{i}+\lambda \sum_{i=1}^{n}\left\|G_{i} u\right\|_{2} \\
\text { s.t. } & s_{i} \geqslant\left|u_{i}-l_{i}\right|, \quad i=1, \ldots, n .
\end{aligned}
$$

Total Variation as SOCP

- Step 2: introduce auxiliary variables for the regularizer:

$$
\begin{aligned}
\min _{u \in \mathbb{R}^{n}, s \in \mathbb{R}^{n}, t \in \mathbb{R}^{n}} & \frac{1}{2} \sum_{i=1}^{n} s_{i}+\lambda \sum_{i=1}^{n} t_{i} \\
\text { s.t. } & s_{i} \geqslant\left|u_{i}-l_{i}\right|, \quad i=1, \ldots, n \\
& t_{i} \geqslant\left\|G_{i} u\right\|_{2}, \quad i=1, \ldots, n
\end{aligned}
$$

Total Variation as SOCP

- Step 2: introduce auxiliary variables for the regularizer:

$$
\begin{aligned}
\min _{u \in \mathbb{R}^{n}, s \in \mathbb{R}^{n}, t \in \mathbb{R}^{n}} & \frac{1}{2} \sum_{i=1}^{n} s_{i}+\lambda \sum_{i=1}^{n} t_{i} \\
\text { s.t. } & s_{i} \geqslant\left|u_{i}-I_{i}\right|, \quad i=1, \ldots, n \\
& t_{i} \geqslant\left\|G_{i} u\right\|_{2}, \quad i=1, \ldots, n
\end{aligned}
$$

The objective function is now linear, and the constraints have second-order conic (SOCP) form. We may have to introduce more variables to bring the problem into the specific form that the solver requires.

Higher-order Total Variation

- Total variation keeps edges but introduces "stair-casing" artifacts on continuous gradients
- Idea: Penalizing the first derivative keeps the function piecewise constant. Penalizing the second derivatives should keep the function piecewise linear:

$$
\min _{u: \Omega \rightarrow \mathbb{R}} f(u):=\frac{1}{2} \int_{\Omega}\|u-I\|^{2} d x+\lambda \underbrace{\int_{\Omega}\left\|D^{2} u\right\|_{2}}_{=: T V^{2}(u)}
$$

where D^{2} is the (generalized) Hessian of u.

- We can also use third- or even higher-order derivatives $D^{k} u$.
- Problem: we cannot have jumps again!

Infimal convolution

Definition (Infimal convolution)

For functions $f_{1}, \ldots, f_{n}: X \rightarrow \overline{\mathbb{R}}$ for any set X, we define the infimal convolution/inf-convolution $\left(f_{1} \square \cdots \square f_{n}\right): X \rightarrow \overline{\mathbb{R}}$ as

$$
\left(f_{1} \square \cdots \square f_{k}\right)(u)=\inf _{z^{1}, \ldots, z^{k}, z^{1}+\ldots+z^{k}=u}\left(f_{1}\left(z^{1}\right)+\ldots+f_{k}\left(z^{k}\right)\right) .
$$

Infimal convolution

Definition (Infimal convolution)

For functions $f_{1}, \ldots, f_{n}: X \rightarrow \overline{\mathbb{R}}$ for any set X, we define the infimal convolution/inf-convolution $\left(f_{1} \square \cdots \square f_{n}\right): X \rightarrow \overline{\mathbb{R}}$ as

$$
\left(f_{1} \square \cdots \square f_{k}\right)(u)=\inf _{z^{1}, \ldots, z^{k}, z^{1}+\ldots+z^{k}=u}\left(f_{1}\left(z^{1}\right)+\ldots+f_{k}\left(z^{k}\right)\right) .
$$

Example (ROF is inf-convolution)

$$
\min _{u: \Omega \rightarrow \mathbb{R}} \frac{1}{2} \int_{\Omega}\|u-l\|^{2} d x+\lambda \int_{\Omega}\|D u\|_{2} d x
$$

Infimal convolution

Definition (Infimal convolution)

For functions $f_{1}, \ldots, f_{n}: X \rightarrow \overline{\mathbb{R}}$ for any set X, we define the infimal convolution/inf-convolution $\left(f_{1} \square \cdots \square f_{n}\right): X \rightarrow \overline{\mathbb{R}}$ as

$$
\left(f_{1} \square \cdots \square f_{k}\right)(u)=\inf _{z^{1}, \ldots, z^{k}, z^{1}+\ldots+z^{k}=u}\left(f_{1}\left(z^{1}\right)+\ldots+f_{k}\left(z^{k}\right)\right) .
$$

Example (ROF is inf-convolution)

$$
\min _{u, w: \Omega \rightarrow \mathbb{R}, u+w=\prime} \underbrace{\frac{1}{2} \int_{\Omega}\|w\|^{2} d x}_{f_{1}(w)}+\underbrace{\lambda \int_{\Omega}\|D u\|_{2} d x}_{f_{2}(u)} .
$$

\rightarrow "Cartoon-texture decomposition"

Infimal convolution

- We can use infimal convolution to combine first- and second-order regularizers!

Example (TV - TV ${ }^{2}$ regularization)

$$
\inf _{u, v, w, u+v+w=I}\left\{\frac{1}{2}\|w\|_{2}^{2}+\lambda \operatorname{TV}(u)+\mu \operatorname{TV}^{2}(v)\right\}
$$

- This naturally splits the image into parts
- With small "Gaussian" energy (w)
- With few nonzero gradient/piecewise constant (u)
- With few nonzero second derivatives/piecewise affine, but without jumps (v)

Total Generalized Variation

- We can also split the gradient instead:

Example (Total Generalized Variation, cascading formulation)

$$
\inf _{u, v, w, v+w=D u}\left\{\frac{1}{2}\|u-l\|_{2}^{2}+\lambda \int_{\Omega}|v|+\mu \int_{\Omega}\|\mathcal{E} w\|_{2}\right\} .
$$

Classically \mathcal{E} is the symmetrized gradient, $\frac{1}{2} D w+\frac{1}{2}(D w)^{\top}$.

Overview

Multichannel images

Vector-TV

- What if we have $u: \Omega \rightarrow \mathbb{R}^{m}$ instead?
- Natural extension:

$$
\min _{u: \Omega \rightarrow \mathbb{R}^{m}} \frac{1}{2} \int_{\Omega}\|u(x)-I(x)\|_{2}^{2} d x+\lambda \int_{\Omega}\|D u\|_{\#}
$$

- Which norm for $\|\cdot\|_{\#}$? $D u(x) \in \mathbb{R}^{n \times m}$ (in the smooth case) \rightarrow need a matrix norm!
- Common choices: For $A=\left(a^{1}, \ldots, a^{m}\right) \in R^{n \times m}$,

$$
\begin{array}{lr}
\|A\|_{\#}=\left\|a^{1}\right\|_{2}+\cdots+\left\|a^{m}\right\|_{2} & \text { channel-by-channel } \\
\|A\|_{\#}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left(a_{j}^{i}\right)^{2}\right)^{1 / 2} & \text { Frobenius norm }
\end{array}
$$

- Both representable as an SOCP!

Singular value-based norms

- Idea: A symmetric matrix $A \in \mathbb{R}^{n \times n}$ can be written in the form

$$
A=P \Sigma P^{\top}
$$

where P is orthogonal $\left(P P^{\top}=P^{\top} P=I d\right)$ and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ is a diagonal matrix with the eigenvalues $\sigma_{1} \geqslant \sigma_{2} \geqslant \ldots \geqslant \sigma_{n}$ of A.

- We could use norms derived from the eigenvalues, for example

$$
\begin{array}{rlr}
\|A\|_{\#} & =\left|\sigma_{1}\right|+\ldots+\left|\sigma_{n}\right|, & \text { nuclear norm } \\
\|A\|_{\#} & =\max _{i=1, \ldots, n}\left|\sigma_{i}\right|, & \text { spectral norm } \\
\|A\|_{\#} & =\left(\left|\sigma_{1}\right|^{p}+\cdots+\left|\sigma_{n}\right|^{p}\right)^{1 / p} & \text { Schatten-p-norm }
\end{array}
$$

- But: For $u: \Omega \rightarrow \mathbb{R}^{m}$, we usually have $\nabla u(x) \in \mathbb{R}^{n \times m}$, which is neither quadratic nor symmetric.

Singular values

Proposition (Singular Value Decomposition)

Every matrix $A \in \mathbb{R}^{n \times m}$ has a singular value decomposition (SVD) of the form

$$
A=U \Sigma V^{\top},
$$

where $U \in \mathbb{R}^{n \times n}, V \in \mathbb{R}^{m \times m}, U$ and V are unitary matrices, i.e., $U^{\top} U=I d_{n \times n}, V^{\top} V=I d_{m \times m}$, and $\Sigma \in \mathbb{R}^{n \times m}$ is a matrix with the unique (!) singular values $\sigma_{1} \geqslant \sigma_{2} \geqslant \cdots \geqslant \sigma_{n} \geqslant 0$ on the diagonal, and zero everywhere else.

Example (SVD I)

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4 \\
8 & 4
\end{array}\right)=U \Sigma V^{\top}, \quad \Sigma=\left(\begin{array}{rr}
9.88 & 0 \\
0 & 2.72 \\
0 & 0
\end{array}\right), \\
& U=\left(\begin{array}{rrr}
0.20 & 0.40 & -0.89 \\
0.40 & 0.80 & 0.45 \\
0.90 & -0.44 & 0
\end{array}\right), \quad V=\left(\begin{array}{rr}
0.83 & -0.56 \\
0.56 & 0.83
\end{array}\right)
\end{aligned}
$$

Example (SVD II)

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4 \\
4 & 8
\end{array}\right)=U \Sigma V^{\top}, \quad \Sigma=\left(\begin{array}{rr}
10.25 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right), \\
& U=\left(\begin{array}{rrr}
0.22 & -0.97 & -0.11 \\
0.44 & 0 & 0.90 \\
0.87 & 0.24 & -0.42
\end{array}\right), \quad V=\left(\begin{array}{rr}
0.45 & -0.89 \\
0.89 & 0.45
\end{array}\right)
\end{aligned}
$$

Example (SVD II)

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4 \\
4 & 8
\end{array}\right)=U \Sigma V^{\top}, \quad \Sigma=\left(\begin{array}{rr}
10.25 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right), \\
& U=\left(\begin{array}{rrr}
0.22 & -0.97 & -0.11 \\
0.44 & 0 & 0.90 \\
0.87 & 0.24 & -0.42
\end{array}\right), V=\left(\begin{array}{rr}
0.45 & -0.89 \\
0.89 & 0.45
\end{array}\right)
\end{aligned}
$$

- The number of non-zero singular values is the same as the rank of the matrix.
- We can use regularizers based on the singular values, for example the nuclear norm, Schatten p-norms etc.

Nuclear norm

Definition (nuclear norm)

For $A \in \mathbb{R}^{n \times m}$, the nuclear norm is defined as

$$
\|A\|_{*}=\left|\sigma_{1}\right|+\cdots+\left|\sigma_{n}\right|
$$

where $\sigma_{1} \geqslant \sigma_{2} \geqslant \cdots \geqslant \sigma_{n}$ are the singular values of A.

Example (Nuclear norm TV/low rank regularization)

$$
\min _{u: \Omega \rightarrow \mathbb{R}} \frac{1}{2} \int_{\Omega}\|u-I\|_{2}^{2} d x+\lambda \int_{\Omega}\|D u\|_{*}
$$

How can we get this into a standard form? It is not an SOCP!

Semidefinite cone

Definition

The "positive semidefinite cone"

$$
K_{n}^{\mathrm{SDP}}:=\left\{X \in \mathbb{R}^{n \times n} \mid X \text { symmetric positive semidefinite }\right\}
$$

is a closed, convex cone. Conic programs with $K=K_{n_{1}}^{\mathrm{SDP}} \times \ldots \times K_{n_{I}}^{\mathrm{SDP}}$ are called "semidefinite programs" (SDP):

$$
\begin{array}{cl}
\inf _{x \in \mathbb{R}^{n}} & c^{\top} x \\
\text { s.t. } & A x-b \in K
\end{array}
$$

Here A is a linear operator $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{1} \times n_{1}} \times \cdots \times \mathbb{R}^{n_{l} \times n_{1}}$, and $b \in \mathbb{R}^{n_{1} \times n_{1}} \times \cdots \times \mathbb{R}^{n_{1} \times n_{1}}$. Often x and c are also written as matrices $X, C \in \mathbb{R}^{n \times n}$ with the inner product $\langle C, X\rangle:=\sum_{i, j} C_{i j} X_{i j}$ replacing $c^{\top} x$.

Nuclear norm as SDP

Proposition

For $M \in \mathbb{R}^{n \times m}$, the nuclear norm can be written in SDP form:

$$
\begin{aligned}
\|M\|_{*}= & \left|\sigma_{1}\right|+\cdots+\left|\sigma_{n}\right| \\
= & \min _{B \in \mathbb{R}^{n \times n}, C \in \mathbb{R}^{m \times m}} \frac{1}{2} \operatorname{tr} B+\frac{1}{2} \operatorname{tr} C \\
& \quad \text { s.t. }\left(\begin{array}{cc}
B & M \\
M^{\top} & C
\end{array}\right) \text { positive semidefinite. }
\end{aligned}
$$

This can be proven rigorously using the SVD of A, but as a motivation consider the case $n=1$, i.e., $M=a \in \mathbb{R}$: Then the semidefiniteness means $b \geqslant 0, c \geqslant 0$, and $b c-a^{2} \geqslant 0$, i.e., $b c \geqslant a^{2}$. We compute the minimum of $\frac{1}{2}(b+c)$ subject to $b c \geqslant a^{2}$. The latter will hold with equality, thus by substitution and optimality conditions $b=c=|a|$.

Overview

Segmentation and Relaxation

Segmentation

- In many interesting applications the range is discrete: In every $x \in \Omega$, a discrete decision has to be made.

Segmentation

Segmentation

Motivation - Multiclass Labeling

- Applications: Segmentation, denoising, 3D reconstruction, depth from stereo, inpainting, photo montage, optical flow,...

Motivation - Problem

- Finite labeling problem:

- Partition image domain Ω into L regions
- Discrete decision at each point in continuous domain Ω
- Variational Approach:

$$
\min _{\ell: \Omega \rightarrow\{1, \ldots, L\}} \underbrace{\int_{\Omega} s(\ell(x), x) d x}_{\text {local data fidelity }}+\underbrace{J(\ell)}_{\text {regularizer }}
$$

- Why this form?

Bayesian model

- Assume the domain Ω consists of a finite set of points (pixels) $x \in \Omega$ and we have a local probabilistic model for the observation $I: \Omega \rightarrow \mathbb{R}^{m}$ given the ground-truth (true) segmentation $\ell(x)$,

$$
\mathbb{P}(I \mid \ell)=\prod_{x \in \Omega} \mathbb{P}(I(x) \mid \ell(x))
$$

- Classic example: Two classes, Gaussian distribution:

$$
\begin{aligned}
& \mathbb{P}(I(x) \mid \ell(x)=1)=\mathcal{N}\left(I(x) ; c_{1}, \sigma_{1}^{2}\right) \sim e^{-\frac{\left(I(x)-c_{1}\right)^{2}}{\sigma_{1}^{1}}} \\
& \mathbb{P}(I(x) \mid \ell(x)=2)=\mathcal{N}\left(I(x) ; c_{2}, \sigma_{2}^{2}\right) \sim e^{-\frac{\left(I(x)-c_{2}\right)^{2}}{\sigma_{2}^{2}}}
\end{aligned}
$$

Bayesian model

- Given the observation I, we would like to find the segmentation ℓ that maximizes the "a posteriori probability". Using the Bayes rule:

$$
\max _{\ell} \mathbb{P}(\ell \mid I)=\frac{\mathbb{P}(\ell, I)}{\mathbb{P}(I)}=\frac{\mathbb{P}(I \mid \ell) \mathbb{P}(\ell)}{\mathbb{P}(I)}
$$

- The $\mathbb{P}(I)$ part is not relevant, and instead of maximizing $\mathbb{P}(\ell \mid I)$ we can find ℓ by minimizing $-\log \mathbb{P}(\ell \mid I)$:

$$
\begin{aligned}
\min _{\ell} & -\log (\mathbb{P}(I \mid \ell) \mathbb{P}(\ell))=-\log \mathbb{P}(I \mid \ell)-\log \mathbb{P}(\ell) \\
= & \underbrace{\left\{\sum_{x \in \Omega}-\log \mathbb{P}(I(x) \mid \ell(x))\right\}}_{\approx \int_{\Omega} s(\ell(x), x) d x} \underbrace{-\log \mathbb{P}(\ell)}_{J(\ell)}
\end{aligned}
$$

- For the Gaussian model:

$$
s(1, x)=\left(I(x)-c_{1}\right)^{2} / \sigma_{1}^{2}, \quad s(2, x)=\left(I(x)-c_{2}\right)^{2} / \sigma_{2}^{2} .
$$

Combinatorial issues

- Approach:

$$
\min _{\ell: \Omega \rightarrow\{1, \ldots, L\}} \underbrace{\int_{\Omega} s(\ell(x), x) d x}_{\text {local data fidelity }}+\underbrace{J(\ell)}_{\text {regularizer }}
$$

- This is a combinatorial problem - optimization is hard!
- No gradient, Hessian \rightarrow no gradient descent, Newton, no simple optimality conditions
- For n pixels we would have to test all possible L^{n} assignments
- Idea: Can we extend ("relax") the problem to a larger set of functions and make it convex?

Relaxation example

- Simple combinatorial optimization problem:

$$
\min _{x \in\{1,2,3\}} f(x), \quad f(1)=2, f(2)=1, f(3)=3
$$

- We can write this as

$$
\min _{x \in \mathbb{R}} g(x), \quad g(x)= \begin{cases}2, & x=1 \\ 1, & x=2 \\ 3, & x=3 \\ +\infty, & \text { otherwise }\end{cases}
$$

- This g is not convex (and not even finite everywhere)! We would like to find some convex function h with $h(x)=g(x)$ if $x \in\{1,2,3\}$.
- This is not a unique problem, but if we some choices are better - we do not want to create additional minimizers!

Convex envelope

Definition (Legendre-Fenchel Transform)

Let $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$, then

$$
\begin{aligned}
& f^{*}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}} \\
& f^{*}(v):=\sup _{x \in \mathbb{R}^{n}}\{\langle v, x\rangle-f(x)\}
\end{aligned}
$$

is the "conjugate to f^{\prime} ". The mapping $f \mapsto f^{*}$ is the "Legendre-Fenchel transform". The function $f^{* *}=\left(f^{*}\right)^{*}$ is the "biconjugate" of f.

Theorem (Convex envelope)

Assume $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ and assume that the largest convex function g with $g \leqslant f$ is proper. Then the biconjugate $f^{* *}$ is the largest convex (lower semi-continuous) function smaller or equal to f.

Relaxation example

- Example:

$$
\begin{gathered}
g(x)= \begin{cases}2, & x=1 \\
1, & x=2 \\
3, & x=3 \\
+\infty, & \text { otherwise }\end{cases} \\
g^{*}(y)=\sup _{x \in \mathbb{R}}\{x y-g(x)\}=\max \{y-2,2 y-1,3 y-3\},
\end{gathered}
$$

For a given slope y, the affine function

$$
x y-g^{*}(y)
$$

is below g and touches g from below.

- The biconjugate

$$
g^{* *}(x)=\sup _{y \in \mathbb{R}}\left\{y x-g^{*}(x)\right\}
$$

is the pointwise supremum of all affine functions that touch g from below.

Relaxation

Relaxation

Relaxation

Relaxation

- Minimizing $g^{* *}$ we get (in this simple case) the same minimizer as when solving the original combinatorial problem! But we can now use continuous optimization methods, for example using conic programming.

- The biconjugate approach allows to systematically compute the "best" relaxation.
- Not all energies can be exactly ("tightly") relaxed like this!

Relaxation - Multi-Class Labeling

- It is possible to relax $u: \Omega \rightarrow\{1, \ldots, L\}$ to $u: \Omega \rightarrow \mathbb{R}$, but there is a better way:
- Multi-class relaxation: [Lie et al. 06, Zach et al. 08, Lellmann et al. 09, Pock et al. 09]

- Embed labels into \mathbb{R}^{L} as $\mathcal{E}:=\left\{e^{1}, \ldots, e^{L}\right\}$, relax integrality constraint to the unit simplex:

$$
\begin{gathered}
\Delta_{L}:=\left\{x \in \mathbb{R}^{L} \mid x \geqslant 0, \sum_{i} x_{i}=1\right\}=\operatorname{conv} \mathcal{E}, \\
\min _{u: \Omega \rightarrow \Delta_{L}} f(u), \quad f(u):=\int_{\Omega}\langle u(x), s(x)\rangle d x+\int_{\Omega} \Psi(D u)
\end{gathered}
$$

with $s(x)_{i}=s(i, x)$.

- The data term becomes linear!

Model - Envelope Relaxation

- We want to implement a length-based regularization: $J(\ell)$ penalizes the boundary length multiplied by an interaction potential $d(i, j)$:

- How to extend J to all functions $u: \Omega \rightarrow \Delta_{L}$?
- We know what the value of $J(\ell)$ should be whenever u corresponds to some ℓ, i.e., $u(x)=e^{\ell(x)}$. It is possible to show that

$$
\int_{\Omega} \Psi(D u)=\int_{\mathcal{J}_{u}} \Psi\left(\left(e^{i}-e^{j}\right) \nu^{\top}\right)
$$

where \mathcal{J}_{u} is the jump set, i and j are the labels on both sides of the jump, and ν is the normal of the boundary. We can set $\Psi\left(\left(e^{i}-e^{j}\right) \nu^{\top}\right)=d(i, j)$ to get the length-based regularization, but it is only defined if all gradients $D u$ of u have this particular form.

Relaxation

- We construct a regularizer of the form

$$
J(u)=\int_{\Omega} \Psi(D u)
$$

The requirements are:

- $\Psi\left(\left(e^{i}-e^{j}\right) \nu^{\top}\right)=\|\nu\| d(i, j)$
- Ψ (and therefore J) should be convex (and lower semi-continuous)
- Ψ should not introduce additional minimizers if possible
- Use the biconjugate!

$$
J(u)=\int_{\Omega} \Psi^{* *}(D u)
$$

where

$$
\Psi(M)= \begin{cases}\|\nu\| d(i, j), & \text { if } M=\left(e^{i}-e^{j}\right) \nu^{\top} \\ +\infty, & \text { otherwise }\end{cases}
$$

Model - Envelope Relaxation

- Following this through, we get the following:
- $J(u)$ implicitly defined as local envelope for given d
[ChambolleCremersPock08,LellmannSchnoerr10]

$$
\begin{aligned}
J(u) & :=\sup _{v \in \mathcal{D}} \int_{\Omega}\langle u, \operatorname{Div} v\rangle=\int_{\Omega} \underbrace{\sigma_{\mathcal{D}_{\text {loc }}}(D u)}_{\Psi(D u)}, \\
\mathcal{D} & :=\left\{v \in\left(C_{c}^{\infty}\right)^{d \times L} \mid v(x) \in \mathcal{D}_{\text {loc }} \forall x \in \Omega\right\} \\
\mathcal{D}_{\text {loc }} & :=\left\{\left(v^{1}, \ldots, v^{L}\right) \in \mathbb{R}^{d \times L} \mid\left\|v^{i}-v^{j}\right\|_{2} \leqslant d(i, j) \forall i, j\right\} .
\end{aligned}
$$

- It is also possible to use simpler but easier relaxations, e.g.,

$$
J(u)=\int_{\Omega}\|D u\|_{F}
$$

with the Frobenius norm $\|A\|_{F}=\left(\sum_{i, j} A_{i j}^{2}\right)^{1 / 2}$.

Histogram-based segmentation

Histogram-based segmentation

Histogram-based segmentation

Overview

Numerical solution - CVX

Variational image restoration and segmentation

Jan Lellmann
Cambridge Image Analysis
Department for Applied Mathematics and Theoretical Physics
Cambridge University

Granada, May 2015

Model - Rounding

- Fractional solutions may occur:

- This is the cost that we pay for solving the easier relaxed problem
- Will generally happen if there is more than one solution

Rounding - Generalized Coarea Formula

- Two-class case: Generalized coarea formula [Strang83, ChanEsedogluNikolva006, Zach et al. 09, Olsson et al. 09]

$$
f(u)=\int_{0}^{1} f\left(\bar{u}_{\gamma}\right) d \gamma, \quad \bar{u}_{\gamma}:= \begin{cases}e^{1}, & u_{1}(x)>\gamma \\ e^{2}, & u_{1}(x) \leqslant \gamma\end{cases}
$$

- Also: Choquet integral, Lovász extension, levelable function,...
- Consequence: $C=1$, global integral minimizer for a.e. γ ! Why? If not, then

$$
\int_{0}^{1} f\left(\bar{u}_{\gamma}^{*}\right) d \gamma>\int_{0}^{1} f\left(u_{\mathcal{E}}^{*}\right) d \gamma=f\left(u_{\mathcal{E}}^{*}\right) \geqslant f\left(u^{*}\right)=\int_{0}^{1} f\left(\bar{u}_{\gamma}^{*}\right) d \gamma
$$

which is a contradiction to the coarea formula.

- Multi-class generalizations are possible, but we only get suboptimal solutions.

Rounding - Generalized Coarea Formula

Coarea!

$$
\mathbb{E} f\left(\bar{u}_{\gamma}^{*}\right)=f\left(u^{*}\right) \leqslant f\left(u_{\mathcal{E}}^{*}\right)
$$

Rounding - Generalized Coarea Formula

Coarea!

$$
\mathbb{E} f\left(\bar{u}_{\gamma}^{*}\right)=f\left(u^{*}\right) \leqslant f\left(u_{\mathcal{E}}^{*}\right)
$$

Rounding - Generalized Coarea Formula

Coarea!

$$
\mathbb{E} f\left(\bar{u}_{\gamma}^{*}\right)=f\left(u^{*}\right) \leqslant f\left(u_{\mathcal{E}}^{*}\right)
$$

Variational image restoration and segmentation

Jan Lellmann
Cambridge Image Analysis
Department for Applied Mathematics and Theoretical Physics
Cambridge University

Granada, May 2015

