
1

DIFFOP - Differential operators
in MATLAB without the pain

Table of Contents
Introduction and Quickstart .. 1
How it works ... 3
Higher-dimensional data .. 4
Affine operators ... 6
A real-world example .. 8
Large-scale data .. 10
Using DIFFOP to speed up operator evaluation .. 11

Introduction and Quickstart
DIFFOP is a library to quickly generate sparse matrices from linear MATLAB expressions.

The following simple example computes the second derivatives of a function using the usual [1 -2 1]
stencil with Neumann boundary conditions, and verifies that it works:

function diffop_demo

function result = second_deriv(f)
 f_ex = [f(1); f; f(end)]; % expand using ghost cells
 ii = 2:(numel(f_ex)-1);
 result = f_ex(ii+1) + f_ex(ii-1) - 2 * f_ex(ii);
end

f = [2 5 -4 1]';
fxx1 = second_deriv(f);
fxx1'

ans =

 3 -12 14 -5

ans =

 -1 1 0 0
 1 -2 1 0
 0 1 -2 1
 0 0 1 -1

While this works for simply applying the linear operator, there are many cases where it is actually prefer-
able to represent the function as a matrix instead:

• Writing fxx = A * f(:) makes immediately clear that we are evaluating a linear operator.

DIFFOP - Differential operators
in MATLAB without the pain

2

• It is easy to pass the operator including information about its dimensions to other functions, and to
combine operators just by concatenating or multiplying their associated matrices.

• It is trivial to compute the adjoint (transpose) of the operator, which is often required in numerical
optimization methods.

• The operator can also be easily (pseudo-) inverted using standard MATLAB functions for solving linear
equation systems.

For second_deriv(), the associated matrix is tridiagonal and can be constructed as follows:

[1 2 3]

n = numel(f);
A = spdiags([ones(n,1), -2*ones(n,1), ones(n,1)],[-1 0 1],n,n);
A(1,1) = -1; % Adjust for Neumann boundary conditions
A(end,end) = -1;
full(A) % convert to dense matrix for display

ans =

 1 2 3

ans =

 -1 1 0 0
 1 -2 1 0
 0 1 -2 1
 0 0 1 -1

This creates a sparse matrix with [-1, 2, -1] on the diagonals. It computes the same as
second_deriv():

fxx2 = A * f(:);
fxx2'
norm(fxx2 - fxx1, +inf) % zero up to numerical precision

ans =

 3 -12 14 -5

ans =

 0

For this simple example the code doesn't look too bad, but once we step into multiple dimensions, different
boundary conditions, local weights etc., constructing the associated matrix manually becomes not only
annoying but also a reliable source of discretization errors.

This is what computing A looks like using DIFFOP:

DIFFOP - Differential operators
in MATLAB without the pain

3

f_vars = spvar([n,1]); % create 4 x 1 vector of variables
op = second_deriv(f_vars);

full(op.A()) % op.A() returns the matrix form of second_deriv()

This automatically generates the matrix form of second_deriv() and makes it accessible through
op.A(). As long as only linear operations are used, the same works for almost any other code instead of
second_deriv() as well, see below for some more advanced examples.

This means we can implement the operator in the most natural way, but still have all the benefits of having
access to a matrix representation.

How it works
DIFFOP relies on a custom class for the variables and heavy operator overloading. When creating a new
set of variables as in

x = spvar([4 1]);

spexpr() actually returns an object of class spexpr:

class(x)

ans =

spexpr

The object knows its size as passed to spvar

x

x =

variables, dimensions = 4 1

but internally stores the matrix representation of all linear operations that have been applied to it. For the
plain set of variables, A is thus the identity matrix:

full(x.A())

ans =

 1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1

Other linear operations behave in a similar way:

x1 = 5 * x;
full(x1.A()) % all entries of A are multiplied by 5

DIFFOP - Differential operators
in MATLAB without the pain

4

ans =

 5 0 0 0
 0 5 0 0
 0 0 5 0
 0 0 0 5

x2 = x(1:2);
full(x2.A()) % a subset of rows of A is extracted

ans =

 1 0 0 0
 0 1 0 0

x3 = x(1) + x(2);
full(x3.A()) % rows of A are added

ans =

 1 1 0 0

and so on. This is a simplified version of the concept used by tools for automatic differentiation and
libraries such as CVX, specialized to the linear case.

Higher-dimensional data
DIFFOP can also easily be used for two- and higher-dimensional data. First we implement the two-di-
mensional forward difference operator:

function result = forward_diff(u)
 result = {u(2:end,1:end-1) - u(1:end-1,1:end-1),...
 u(1:end-1,2:end) - u(1:end-1,1:end-1)};
end

This operator returns two results as a cell array, one for the gradient of u in the direction, and one for

the gradient in the direction:

n = 3; m = 4; % small 3x4 domain for demonstration

forward_diff can be used in exactly the same way as in the simple one-dimensional example, except that
we create a two-dimensional array of variables instead of a vector:

u = spvar([n m]);
u_neu = [u u(:,end);...
 u(end,:) 0]; % extend to Neumann boundary conditions

G_neu = forward_diff(u_neu)

G_neu =

DIFFOP - Differential operators
in MATLAB without the pain

5

 [3x4 spexpr] [3x4 spexpr]

G_neu is now a cell array as well, and contains the matrices for evaluating the and derivatives:

full(G_neu{1}.A())
full(G_neu{2}.A())

ans =

 -1 1 0 0 0 0 0 0 0 0 0 0
 0 -1 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 -1 1 0 0 0 0 0 0 0
 0 0 0 0 -1 1 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 -1 1 0 0 0 0
 0 0 0 0 0 0 0 -1 1 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 -1 1 0
 0 0 0 0 0 0 0 0 0 0 -1 1
 0 0 0 0 0 0 0 0 0 0 0 0

ans =

 -1 0 0 1 0 0 0 0 0 0 0 0
 0 -1 0 0 1 0 0 0 0 0 0 0
 0 0 -1 0 0 1 0 0 0 0 0 0
 0 0 0 -1 0 0 1 0 0 0 0 0
 0 0 0 0 -1 0 0 1 0 0 0 0
 0 0 0 0 0 -1 0 0 1 0 0 0
 0 0 0 0 0 0 -1 0 0 1 0 0
 0 0 0 0 0 0 0 -1 0 0 1 0
 0 0 0 0 0 0 0 0 -1 0 0 1
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0

To apply the new operator to numeric data, we can use apply():

x = rand(n,m);
g1 = G_neu{1}.apply(x)

g1 =

 -0.4233 -0.7597 0.6214 -0.2162
 0.0547 0.4789 -0.2467 0.2588
 0 0 0 0

Alternatively, we can use the manual form

DIFFOP - Differential operators
in MATLAB without the pain

6

g2 = reshape(G_neu{1}.A() * x(:), size(G_neu{1}))

g2 =

 -0.4233 -0.7597 0.6214 -0.2162
 0.0547 0.4789 -0.2467 0.2588
 0 0 0 0

Affine operators
DIFFOP is not restricted to linear operators, but also handles constant terms. The code below shows an

example with inhomogeneous Dirichlet boundary conditions, i.e., is assumed to be on the boundary:

u_inhom = [u ones(n,1);...
 ones(1,m) 0];
G_inhom = forward_diff(u_inhom);

The affine parts of the operator are returned by the b() function:

full(G_inhom{1}.A()), G_inhom{1}.b()
full(G_inhom{2}.A()), G_inhom{2}.b()

ans =

 -1 1 0 0 0 0 0 0 0 0 0 0
 0 -1 1 0 0 0 0 0 0 0 0 0
 0 0 -1 0 0 0 0 0 0 0 0 0
 0 0 0 -1 1 0 0 0 0 0 0 0
 0 0 0 0 -1 1 0 0 0 0 0 0
 0 0 0 0 0 -1 0 0 0 0 0 0
 0 0 0 0 0 0 -1 1 0 0 0 0
 0 0 0 0 0 0 0 -1 1 0 0 0
 0 0 0 0 0 0 0 0 -1 0 0 0
 0 0 0 0 0 0 0 0 0 -1 1 0
 0 0 0 0 0 0 0 0 0 0 -1 1
 0 0 0 0 0 0 0 0 0 0 0 -1

ans =

 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0

DIFFOP - Differential operators
in MATLAB without the pain

7

 1

ans =

 -1 0 0 1 0 0 0 0 0 0 0 0
 0 -1 0 0 1 0 0 0 0 0 0 0
 0 0 -1 0 0 1 0 0 0 0 0 0
 0 0 0 -1 0 0 1 0 0 0 0 0
 0 0 0 0 -1 0 0 1 0 0 0 0
 0 0 0 0 0 -1 0 0 1 0 0 0
 0 0 0 0 0 0 -1 0 0 1 0 0
 0 0 0 0 0 0 0 -1 0 0 1 0
 0 0 0 0 0 0 0 0 -1 0 0 1
 0 0 0 0 0 0 0 0 0 -1 0 0
 0 0 0 0 0 0 0 0 0 0 -1 0
 0 0 0 0 0 0 0 0 0 0 0 -1

ans =

 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 1
 1

To evaluate the derivatives in the first direction, we could again use

G_inhom{1}.apply(x)

% or the manual form

reshape(G_inhom{1}.A() * x(:) + G_inhom{1}.b, size(G_inhom{1}))

ans =

 -0.4233 -0.7597 0.6214 -0.2162
 0.0547 0.4789 -0.2467 0.2588
 0.8322 0.3109 0.4380 0.2331

ans =

 -0.4233 -0.7597 0.6214 -0.2162
 0.0547 0.4789 -0.2467 0.2588

DIFFOP - Differential operators
in MATLAB without the pain

8

 0.8322 0.3109 0.4380 0.2331

A real-world example
In the following example, we restore a missing part of an image by minimizing the integral of the squared
Laplacian over the image:

First we implement the two-dimensional Laplace operator:

function result = laplace(u)
 ii = 2:size(u,1)-1; jj = 2:size(u,2)-1;
 result = - 4 * u(ii,jj) + u(ii+1,jj) + u(ii-1,jj) + u(ii,jj+1) + u(ii,jj-1);
end

Then create a random (small) image, and select a region that should be restored:

n = 15; m = 20;
img = rand(n,m);

ni = 4:12; mi = 5:16;
img(ni,mi) = 0; % corrupt center region by setting it to zero
imagesc(img); colormap gray; axis tight;

DIFFOP - Differential operators
in MATLAB without the pain

9

From this data, we create a DIFFOP array of constants using the spconst function. spconst works
just like spvar, but represents constants instead of variables. spconst requires a second parameter that
specifies the number of variables that the final operator will have, as there is no way for spconst to infer
this from the array of constants:

nvar = numel(ni) * numel(mi);
uext = spconst(img,nvar);

We now create a set of variables for the corrupted region replace the inner region with variables

u = spvar([numel(ni) numel(mi)]);
uext(ni,mi) = u;

We can now evaluate the Laplace operator on the whole image, which gives us an expression in terms
of the variables u:

L = laplace(uext);

The boundary values determined by img appear in the affine part b():

b = L.b();
b(1:10)

ans =

 1.0960
 -1.9040
 -0.8989
 -0.4049
 1.2697
 0.0997
 -1.6016
 -0.1671
 1.6988
 0.0025

We can now find a solution with minimal squared Laplacian: in order to minimize

we can simply find a solution of

with the following code:

u_sol = (L.A()' * L.A()) \ (-L.A()' * L.b());
u_sol = reshape(u_sol, size(u));

Finally we piece the solution together with the uncorrupted data:

img_sol = img;

DIFFOP - Differential operators
in MATLAB without the pain

10

img_sol(ni,mi) = u_sol;

imagesc(img_sol);

Large-scale data
DIFFOP works quite well even on large matrices with millions of variables, as long as they are sparse
enough. The code below uses DIFFOP to compute a sparse matrix that computes the Laplace operator

matrix for a image with Dirichlet boundary conditions:

n = 1000; m = 2000;
u = spvar([n m]);

u_dir = [
 zeros(1,m+2);...
 zeros(n,1) u zeros(n,1);...
 zeros(1,m+2)...
];

This should take a few seconds at worst, depending on the MATLAB version and system performance.

tic; L2 = laplace(u_dir); toc

Elapsed time is 2.425814 seconds.

The resulting matrix is a (very) sparse matrix:

DIFFOP - Differential operators
in MATLAB without the pain

11

A = L2.A();
size(A)
full(A(1:10,1:10))

ans =

 2000000 2000000

ans =

 -4 1 0 0 0 0 0 0 0 0
 1 -4 1 0 0 0 0 0 0 0
 0 1 -4 1 0 0 0 0 0 0
 0 0 1 -4 1 0 0 0 0 0
 0 0 0 1 -4 1 0 0 0 0
 0 0 0 0 1 -4 1 0 0 0
 0 0 0 0 0 1 -4 1 0 0
 0 0 0 0 0 0 1 -4 1 0
 0 0 0 0 0 0 0 1 -4 1
 0 0 0 0 0 0 0 0 1 -4

In some cases this might still be too slow, in particular if the operator is implemented inefficiently (for
example using loops instead of vectorization). If the matrix does not change between runs, it may be faster
to compute the operator once, store it in a .MAT file, and just load it on all later runs. If that doesn't
help or the matrix changes frequently, unfortunately there is not much hope other than resorting to a
manual implementation using sparse, spdiags, kron, etc. DIFFOP can still be useful to verify that
the manual implementation generates the correct matrix.

Using DIFFOP to speed up operator evaluation
In some cases it can actually be faster to evaluate linear operators using the DIFFOP and apply() than
using the implementation directly. The reason is that sparse matrix operations are one of the most highly
optimized parts of MATLAB, and once the matrix has been assembled, MATLAB does not have to parse/
interpret any statements.

The code below evaluates the Laplace operator directly on a random image:

q = rand(n,m);

tic; q1 = reshape(laplace([
 zeros(1,m+2);...
 zeros(n,1) q zeros(n,1);...
 zeros(1,m+2)...
]), [n m]); toc

Elapsed time is 0.207650 seconds.

The same code using the previously computed operator L2 and apply() is more than twice as fast:

tic; q2 = L2.apply(q); toc

Elapsed time is 0.077442 seconds.

DIFFOP - Differential operators
in MATLAB without the pain

12

The results are in fact the same up to rounding error:

norm(q1(:) - q2(:), +inf)

ans =

 1.3323e-15

end

%
% DIFFOP - Demonstration Project
%
% Copyright (c) 2014 Jan Lellmann (J.Lellmann@damtp.cam.ac.uk) / CIA
%
% This file is part of the DIFFOP library. DIFFOP may be used for
% non-commercial purposes, and may be freely modified and distributed
% as long as this copyright notice is retained. Use of DIFFOP in a
% commercial environment requires explicit written permission.
%

Published with MATLAB® R2013a

	Table of Contents
	Introduction and Quickstart
	How it works
	Higher-dimensional data
	Affine operators
	A real-world example
	Large-scale data
	Using DIFFOP to speed up operator evaluation

