DIFFOP - Differential operators
iIn MATLAB without the pain

Table of Contents

Introduction and QUICKSLAITuuiiiiiiii e e e e e e e e e e e e e e et e e ean e ean s 1
HOW T WOTKS oo e e e et e e e et n e e et e e e e et s e e e eann e eeennnns 3
Higher-dimensional dafacoouuiiiiiiii e e e 4
F N A1 1SN0 0= = (] £ PP 6
PN == o Lo I =0 o o] = PN 8
(=T TS o [N 0 - - 10
Using DIFFOP to speed up operator eValuationccuueiiiieiiinieii e eein e e e e e e eaens 11

Introduction and Quickstart

Dl FFOPR isalibrary to quickly generate sparse matrices from linear MATLAB expressions.

The following simple example computes the second derivatives of afunction usingtheusual [1 -2 1]
stencil with Neumann boundary conditions, and verifiesthat it works:

function diffop_deno

function result = second_deriv(f)
f_ex = [f(1); f; f(end)]; % expand using ghost cells
ii = 2:(nunel (f_ex)-1);
result =f ex(ii+l) + f ex(ii-1) - 2 * f_ex(ii);

end

f =[25-41]";
fxx1l = second_deriv(f);
fxx1'

ans =

ans =

O ORrPF
OFr NP
1
NP O
PP OO

While this works for simply applying the linear operator, there are many caseswhereit is actually prefer-
able to represent the function as a matrix instead:

o Writingf xx = A * f(:) makesimmediately clear that we are evaluating alinear operator.

DIFFOP - Differential operators
in MATLAB without the pain

It is easy to pass the operator including information about its dimensions to other functions, and to
combine operators just by concatenating or multiplying their associated matrices.

 Itistrivia to compute the adjoint (transpose) of the operator, which is often required in numerical
optimization methods.

e The operator can also be easily (pseudo-) inverted using standard MATLAB functions for solving linear
equation systems.

For second_deri v(), the associated matrix is tridiagonal and can be constructed as follows:

[1 2 3]

n = nunel (f);

A = spdi ags([ones(n,1), -2*ones(n,1), ones(n,1)],[-1 0 1],n,n);
A(1,1) = -1; % Adj ust for Neumann boundary conditions

A(end, end) = -1;

full (A % convert to dense matrix for display

ans =

ans =

OO r Pk
OoOFrNPEF
1
NP O
= OO

This creates a sparse ¥i # 7t matrix with[-1, 2, -1] on the diagonals. It computes the same as
second_deriv():

fxx2 = A* f(:);

fxx2'
norm(fxx2 - fxxl1l, +inf) %zero up to nunerical precision

ans =

ans =

For this simple example the code doesn't look too bad, but once we step into multiple dimensions, different
boundary conditions, local weights etc., constructing the associated matrix manually becomes not only
annoying but also areliable source of discretization errors.

Thisiswhat computing A looks like using DI FFOP:

DIFFOP - Differential operators
in MATLAB without the pain

f_vars = spvar([n,1]); %create 4 x 1 vector of variables
op = second_deriv(f_vars);

full (op.A()) %op.A() returns the matrix form of second_deriv()

This automatically generates the matrix form of second_deri v() and makes it accessible through
op. A() . Aslong asonly linear operations are used, the same works for almost any other code instead of
second_deri v() aswell, see below for some more advanced examples.

This means we can implement the operator in the most natural way, but till have all the benefits of having
access to a matrix representation.

How it works

DI FFOP relies on a custom class for the variables and heavy operator overloading. When creating a new
set of variablesasin

X = spvar([4 1]);
spexpr () actualy returns an object of classspexpr :

cl ass(x)

ans =

spexpr

The object knows its size as passed to spvar

X

X =

vari ables, dinmensions = 4 1

but internally stores the matrix representation of all linear operations that have been applied to it. For the
plain set of variables, A isthus the identity matrix:

full (x. AQ))

ans =

O OO
[oNeN e
(ol NeoNe]
= O OO

Other linear operations behave in asimilar way:

x1 =5 * x;
full (x1.A()) %all entries of Aare nultiplied by 5

DIFFOP - Differential operators

in MATLAB without the pain
ans =
5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5
X2 = x(1:2);

full (x2. A()) % a subset of rows of Ais extracted

x3 = x(1) + x(2);
full (x3.A()) %rows of A are added

and so on. This is a simplified version of the concept used by tools for automatic differentiation and
libraries such as CVX, specialized to the linear case.

Higher-dimensional data

DI FFOP can aso easily be used for two- and higher-dimensional data. First we implement the two-di-
mensional forward difference operator:

function result = forward_diff(u)
result = {u(2:end,1:end-1) - u(l:end-1,1:end-1),...
u(1l:end-1,2:end) - u(l:end-1,1l:end-1)};
end

This operator returns two results as a cell array, one for the gradient of u in the X' direction, and one for
the gradient in the Y direction:

n =3 m=4; %small 3x4 domain for denopnstration

forward_diff can be used in exactly the same way as in the simple one-dimensional example, except that
we create atwo-dimensional ¥t < Tit array of variablesinstead of avector:

u = spvar([n nl);
u_neu = [u u(:,end); ...
u(end,:) O]; %extend to Neumann boundary conditions

G neu = forward_diff(u_neu)

G neu =

DIFFOP - Differential operators
in MATLAB without the pain

[3x4 spexpr] [3x4 spexpr]

G _neu isnow acell array aswell, and contains the matrices for evaluating the . and Y derivatives:

full (G neu{1}.A())
full (G neu{2}.A())

ans =
-1 1 0 0 0 0 0 0 0
0 -1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 -1 1 0 0 0 0
0 0 0 0 -1 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -1 1 0
0 0 0 0 0 0 0 -1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
ans =
-1 0 0 1 0 0 0 0 0
0 -1 0 0 1 0 0 0 0
0 0 -1 0 0 1 0 0 0
0 0 0 -1 0 0 1 0 0
0 0 0 0 -1 0 0 1 0
0 0 0 0 0 -1 0 0 1
0 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 0 -1 0
0 0 0 0 0 0 0 0 -1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

To apply the new operator to numeric data, we can use appl y() :
X = rand(n, m;
gl = G neu{1}. appl y(x)
gl =
-0.4233 -0.7597 0.6214 -0.2162

0. 0547 0.4789 - 0. 2467 0. 2588
0 0 0 0

Alternatively, we can use the manual form

oNeoh NeolololNoNoNoNeNe o)
OFRPRPFPOOO0OO0OO0OO0OO0OO0OO0o
OFRPOO0O000O00O0O0O0O0o

cNeoNeoNoNoh NolNolNoNelNe o)
cNoNeoNeol NeolloNoNoNelNe o)
ocNoNeol NeolloloNolNoNeNe o)

DIFFOP - Differential operators
in MATLAB without the pain

g2 = reshape(G_ neu{1}.A() * x(:), size(G_neu{l}))

92 =

-0. 4233 -0. 7597 0.6214 -0.2162
0. 0547 0. 4789 -0. 2467 0. 2588
0 0 0 0

Affine operators

DI FFOP is not restricted to linear operators, but also handles constant terms. The code below shows an
example with inhomogeneous Dirichlet boundary conditions, i.e., 1t is assumed to be L on the boundary:

u_inhom= [u ones(n,1);...
ones(1,m O 1;
forward diff(u_i nhon);

G_i nhom
The affine parts of the operator are returned by the b() function:

full (G.i nhom{1}.A()), G.inhon{1}.b()
full (G.inhom{2}.A()), G.inhon{2}.b()

ans =
-1 1 0 0 0 0 0 0 0 0
0 -1 1 0 0 0 0 0 0 0
0 0 -1 0 0 0 0 0 0 0
0 0 0 -1 1 0 0 0 0 0
0 0 0 0 -1 1 0 0 0 0
0 0 0 0 0 -1 0 0 0 0
0 0 0 0 0 0 -1 1 0 0
0 0 0 0 0 0 0 -1 1 0
0 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 0 0 0 0 -1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
ans =
0
0
1
0
0
1
0
0
1
0
0

OFRPRPFPOOO0OO0OO0OO0OO0OO0OO0o

PRPOOOOO0OO0OO0OOO0OO0o

DIFFOP - Differential operators

in MATLAB without the pain
1
ans =
-1 0 0 1 0 0 0 0 0 0
0 -1 0 0 1 0 0 0 0 0
0 0 -1 0 0 1 0 0 0 0
0 0 0 -1 0 0 1 0 0 0
0 0 0 0 -1 0 0 1 0 0
0 0 0 0 0 -1 0 0 1 0
0 0 0 0 0 0 -1 0 0 1
0 0 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 0 0 0 0 -1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
ans =
0
0
0
0
0
0
0
0
0
1
1
1

To evaluate the derivativesin the first direction, we could again use

G i nhom{ 1} . appl y(x)

% or the nmanual form

reshape(G_ i nhon{ 1}. A()

ans =
. 4233

0
0. 0547
0. 8322

ans =

-0.4233
0. 0547

-0. 7597
0.4789
0. 3109

-0. 7597
0.4789

0. 6214
- 0. 2467
0. 4380

0. 6214
- 0. 2467

* x(:) + G.inhom{1}.b, size(G.inhon{1}))

-0. 2162
0. 2588
0.2331

-0. 2162
0. 2588

OFRPO0OO0ORFPOO0OO0OOOO0OOo

POOPRPROOOOOOOOo

DIFFOP - Differential operators
in MATLAB without the pain

0. 8322 0. 3109 0. 4380 0. 2331

A real-world example

In the following example, we restore amissing part of an image by minimizing theintegral of the squared
Laplacian over theimage:

min [[_‘ufj“ st. w=uyonC.
o

uki—=H

First we implement the two-dimensional Laplace operator:

function result = Ilaplace(u)

ii = 2:size(u,1)-1; jj = 2:size(u,2)-1;

result = - 4 * u(ii,jj) +u(ii+l,jj) +u(ii-1,jj) +u(ii,jj+1) + u(ii,jj-1);
end

Then create arandom (small) image, and select aregion that should be restored:

n = 15; m= 20;
ing = rand(n, m;

ni = 4:12; m = 5:16;
img(ni,m) = 0; %corrupt center region by setting it to zero
i magesc(ing); colormap gray; axis tight;

DIFFOP - Differential operators
in MATLAB without the pain

From this data, we create a DI FFOP array of constants using the spconst function. spconst works
just likespvar , but represents constantsinstead of variables. spconst requires asecond parameter that
specifiesthe number of variablesthat the final operator will have, asthereisnoway for spconst toinfer
this from the array of constants:

nvar
uext

numel (ni) * numel (m);
spconst (i ng, nvar);

We now create a set of variables for the corrupted region replace the inner region with variables

u = spvar([nunel (ni) numel (ni)]);
uext(ni,m) = u;

We can now evaluate the Laplace operator on the whole image, which gives us an expression in terms
of thevariables u:

L = |l apl ace(uext);
The boundary values determined by img appear in the affine part b() :

b =L.b();
b(1: 10)

ans =

1. 0960
-1.9040
- 0. 8989
- 0. 4049

1. 2697

0. 0997
-1.6016
-0.1671

1. 6988

0. 0025

We can now find a solution with minimal squared Laplacian: in order to minimize
1 3

Z || Az + b2,

E v

we can simply find a solution of

A Azx=-4"b
with the following code:

u_sol
u_sol

(LAO" * LAD) \ (-L.AQO" * L.b());
reshape(u_sol, size(u));

Finally we piece the solution together with the uncorrupted data:

i mg_sol = iny;

DIFFOP - Differential operators
in MATLAB without the pain

img_sol(ni,m) = u_sol;

i mgesc(ing_sol);

Large-scale data

DI FFOP works quite well even on large matrices with millions of variables, as long as they are sparse
enough. The code below uses DI FFOP to compute a sparse matrix that computes the Laplace operator

matrix for al D00 . 2000 image with Dirichlet boundary conditions:

n = 1000; m = 2000;
u = spvar([n n);
udir = [

zeros(1, m2); ...
zeros(n,1) u zeros(n,1);...
zeros(1l, m2)...
1

This should take afew seconds at worst, depending on the MATLAB version and system performance.
tic; L2 = laplace(u_dir); toc

El apsed tinme is 2.425814 seconds.

The resulting matrix is a (very) sparse 2000000 = 2000000 matrix:

10

DIFFOP - Differential operators
in MATLAB without the pain

A= L2 .A0);
size(A)
ful |l (A(1l: 10, 1: 10))

ans =

2000000 2000000

ans =

OO0 O0OO0OFr A~FRO

OO0 O0OO0OFr MR, OO

OCOoOkrRrPA~ArPRPLPOOOOO

QO OO0 O0OO0OOr M
QO OO0 O0OOr M~
OO O0OkFrh~FRLOOO
1
OOk h~AFRLPOOOO
OFRr AP OOOCOOO
1
P AP OOOOCOOOO
AP OOOCOOOCOOO

In some cases this might still be too slow, in particular if the operator is implemented inefficiently (for
example using loopsinstead of vectorization). If the matrix does not change between runs, it may be faster
to compute the operator once, store it in a. MAT file, and just load it on all later runs. If that doesn't
help or the matrix changes frequently, unfortunately there is not much hope other than resorting to a
manual implementation using spar se, spdi ags, kr on, etc. DI FFOP can still be useful to verify that
the manual implementation generates the correct matrix.

Using DIFFOP to speed up operator evaluation

In some cases it can actually be faster to evaluate linear operators using the DI FFOP and appl y() than
using the implementation directly. The reason is that sparse matrix operations are one of the most highly
optimized parts of MATLAB, and once the matrix has been assembled, MATLAB does not have to parse/
interpret any statements.

The code below evaluates the Laplace operator directly on arandom LOO0 = 2000 image:
g = rand(n, m;
tic; gl = reshape(lapl ace(]
zeros(1, m2); ...
zeros(n,1) q zeros(n,1);...
zeros(1, m2). ..

1), [nn); toc
El apsed tine is 0.207650 seconds.
The same code using the previously computed operator L2 and appl y() ismore than twice as fast:
tic; g2 = L2.apply(q); toc

El apsed tine is 0.077442 seconds.

11

DIFFOP - Differential operators
in MATLAB without the pain

The results are in fact the same up to rounding error:

norm(ql(:) - q2(:), +inf)

ans =

1. 3323e-15

end

%

% DI FFOP - Denpnstration Project

%

% Copyright (c) 2014 Jan Lellmann (J.Lel |l mann@lamnmt p. cam ac.uk) / CIA
%

% This file is part of the DIFFOP library. D FFOP may be used for

% non- comer ci al purposes, and may be freely nodified and distributed
% as long as this copyright notice is retained. Use of DDFFOP in a

% comercial environnent requires explicit witten perm ssion.

%

Published with MATLAB® R2013a

12

	Table of Contents
	Introduction and Quickstart
	How it works
	Higher-dimensional data
	Affine operators
	A real-world example
	Large-scale data
	Using DIFFOP to speed up operator evaluation

