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The difficulty of these exercises varies considerably. Exercises marked with + are relatively easy
but useful to recapitulate the various definitions, while those marked ++ require at least one clever
idea. Exercises marked +++ are not for the faint-hearted. You should at least attempt the exercises
that are marked with an exclamation mark (!).

Exercise 1 (Definition of Convexity) +

Complete the proofs of Thm. 3.5 (Jensen), Prop. 3.10, and Prop. 3.15.

Exercise 2 (Convex Sets) +

Show that the following sets are convex:

a) For a given set of x1, . . . , xm ∈ Rn, m > 2, and any j ∈ {1, . . . ,m}, the set of points so that
their distance to xj is not greater than to every of the remaining points (the Voronoi cell for
xj):

V = {x ∈ Rn|∀i ∈ {1, . . . ,m} : ‖x − xj‖2 6 ‖x − xi‖2} .

b) The Lorentz cone
K = {(x, t) ∈ Rn × R| ‖x‖ ≤ t}

for any given norm in ‖ ∙ ‖ in Rn (usually the 2-norm is implicitly referred to).

c) The sum Y = Y1 + Y2, where

Y1 = {x ∈ R2 |‖x‖2 < 1/4}, Y2 = {x ∈ R2 ||x1 − 1|61, |x2|61}.

Exercise 3 (!) (Simplices) ++

We call the convex hull Δn = con{v0, v1, . . . , vm} an (m-)simplex in Rn iff the vi are affinely
independent, i.e., if the only choice of λi ∈ R such that λ0v

0 + . . .+λmvm = 0 and λ0 + . . .+λm = 0
is λi = 0 for all i. Show that every x ∈ Δn can be uniquely represented as a convex combination of
the vi.

Exercise 4 (!) (Improper Functions) ++

Characterize the set of lower semi-continuous, convex functions that are not proper.

Guide: Start from the set of points where the function has finite value.

Exercise 5 (!) (Basic Convexity, Convexity on Lines) +

a) Show that the following functions are convex together with their respective domains (i.e., they
are convex on all of Rn when extended to +∞ outside of their domain): f1 : R>0 → R, f1(x) =
1
x ; f2 : R → R, f2(x) = exp(x); f3 : R>0 → R, f3(x) = − log(x); f4 : R × R>0 → R,

f4(x, y) = x2

y ; f5 : Rn×m → R, f5(X) = ‖X‖σ, where ‖ ∙ ‖σ is the spectral norm; f6 : {X ∈
Rn×n|X symmetric} → R, f6(X) = λmax(X), where λmax(X) is the maximal eigenvalue of X.

b) Show that f : Rn → R̄ is convex if and only if the function g : R→ R̄,

g(t) :=

{
f(x + tv), x + tv ∈ dom f
+∞, x + tv /∈ dom f

is convex for all x ∈ Rn and v ∈ Rn.
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c) Prove or disprove: If f is convex, then f is continuous on dom f .

Exercise 6 (Geometric and Arithmetic Mean) +

Show the inequality of the geometric and arithmetic mean:

(
n∏

i=1

xi

) 1
n

6
1
n

n∑

i=1

xi

for x1, . . . , xn>0.

Guide: Use exercise 5.

Exercise 7 (Derivative Tests) ++

Show the following theorem: Assume C ⊆ Rn is open and convex, and f : C → R is differentiable.
Then the following conditions are equivalent:

1. f is convex,

2. 〈x − y,∇f(x) −∇f(y)〉>0 ∀x, y ∈ C,

3. f(x) + 〈∇f(x), y − x〉6f(y) ∀x, y ∈ C,

4. if f is additionally twice differentiable: ∇2f(x) is positive semidefinite for all x ∈ C.

Guide: Consider one-dimensional sections of f .

Exercise 8 (!) (Carathéodory) ++

Show that, for any set X ⊆ Rn, every element x ∈ con X can be written as a convex combination
of at most n + 1 elements of X.

Exercise 9 (!) (Convex Hulls of Compact Sets) ++

Let X ⊂ Rn be a compact set. Show that con X is compact as well. Can we say something similar
without assuming boundedness, i.e., are convex hulls of closed sets also closed?

Guide: Use Carathéodory’s theorem.

Exercise 10 (!) (Semidefinite Cone) +

a) Show that the set KSDP
n of symmetric positive semidefinite matrices in Rn×n is a pointed closed

convex cone.

b) Show that the function

f(X) =

{
− log det X−1, X ∈ KSDP

n ,

+∞, otherwise

is convex.
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