## Example Sheet 1

The difficulty of these exercises varies considerably. Exercises marked with + are relatively easy but useful to recapitulate the various definitions, while those marked ++ require at least one clever idea. Exercises marked +++ are not for the faint-hearted. You should at least attempt the exercises that are marked with an exclamation mark (!).

## Exercise 1 (Definition of Convexity) +

Complete the proofs of Thm. 3.5 (Jensen), Prop. 3.10, and Prop. 3.15.

## Exercise 2 (Convex Sets) +

Show that the following sets are convex:
a) For a given set of $x^{1}, \ldots, x^{m} \in \mathbb{R}^{n}, m \geqslant 2$, and any $j \in\{1, \ldots, m\}$, the set of points so that their distance to $x^{j}$ is not greater than to every of the remaining points (the Voronoi cell for $x^{j}$ ):

$$
V=\left\{x \in \mathbb{R}^{n} \mid \forall i \in\{1, \ldots, m\}:\left\|x-x^{j}\right\|_{2} \leqslant\left\|x-x^{i}\right\|_{2}\right\} .
$$

b) The Lorentz cone

$$
K=\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R} \mid\|x\| \leq t\right\}
$$

for any given norm in $\|\cdot\|$ in $\mathbb{R}^{n}$ (usually the 2-norm is implicitly referred to).
c) The sum $Y=Y_{1}+Y_{2}$, where

$$
Y_{1}=\left\{x \in \mathbb{R}^{2} \mid\|x\|_{2}<1 / 4\right\}, \quad Y_{2}=\left\{x \in \mathbb{R}^{2} \| x_{1}-1\left|\leqslant 1,\left|x_{2}\right| \leqslant 1\right\} .\right.
$$

## Exercise 3 (!) (Simplices) + +

We call the convex hull $\Delta_{n}=\operatorname{con}\left\{v^{0}, v^{1}, \ldots, v^{m}\right\}$ an ( $m$-) simplex in $\mathbb{R}^{n}$ iff the $v^{i}$ are affinely independent, i.e., if the only choice of $\lambda_{i} \in \mathbb{R}$ such that $\lambda_{0} v^{0}+\ldots+\lambda_{m} v^{m}=0$ and $\lambda_{0}+\ldots+\lambda_{m}=0$ is $\lambda_{i}=0$ for all $i$. Show that every $x \in \Delta_{n}$ can be uniquely represented as a convex combination of the $v^{i}$.

Exercise 4 (!) (Improper Functions) ++
Characterize the set of lower semi-continuous, convex functions that are not proper.
Guide: Start from the set of points where the function has finite value.

## Exercise 5 (!) (Basic Convexity, Convexity on Lines) +

a) Show that the following functions are convex together with their respective domains (i.e., they are convex on all of $\mathbb{R}^{n}$ when extended to $+\infty$ outside of their domain): $f_{1}: \mathbb{R}_{>0} \rightarrow \mathbb{R}, f_{1}(x)=$ $\frac{1}{x} ; f_{2}: \mathbb{R} \rightarrow \mathbb{R}, f_{2}(x)=\exp (x) ; f_{3}: \mathbb{R}_{>0} \rightarrow \mathbb{R}, f_{3}(x)=-\log (x) ; f_{4}: \mathbb{R} \times \mathbb{R}_{>0} \rightarrow \mathbb{R}$, $f_{4}(x, y)=\frac{x^{2}}{y} ; f_{5}: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}, f_{5}(X)=\|X\|_{\sigma}$, where $\|\cdot\|_{\sigma}$ is the spectral norm; $f_{6}:\{X \in$ $\mathbb{R}^{n \times n} \mid X$ symmetric $\} \rightarrow \mathbb{R}, f_{6}(X)=\lambda_{\max }(X)$, where $\lambda_{\max }(X)$ is the maximal eigenvalue of $X$.
b) Show that $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is convex if and only if the function $g: \mathbb{R} \rightarrow \overline{\mathbb{R}}$,

$$
g(t):= \begin{cases}f(x+t v), & x+t v \in \operatorname{dom} f \\ +\infty, & x+t v \notin \operatorname{dom} f\end{cases}
$$

is convex for all $x \in \mathbb{R}^{n}$ and $v \in \mathbb{R}^{n}$.
c) Prove or disprove: If $f$ is convex, then $f$ is continuous on $\operatorname{dom} f$.

## Exercise 6 (Geometric and Arithmetic Mean) +

Show the inequality of the geometric and arithmetic mean:

$$
\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}} \leqslant \frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

for $x_{1}, \ldots, x_{n} \geqslant 0$.
Guide: Use exercise 5.

Exercise 7 (Derivative Tests) ++
Show the following theorem: Assume $C \subseteq \mathbb{R}^{n}$ is open and convex, and $f: C \rightarrow \mathbb{R}$ is differentiable. Then the following conditions are equivalent:

1. $f$ is convex,
2. $\langle x-y, \nabla f(x)-\nabla f(y)\rangle \geqslant 0 \quad \forall x, y \in C$,
3. $f(x)+\langle\nabla f(x), y-x\rangle \leqslant f(y) \quad \forall x, y \in C$,
4. if $f$ is additionally twice differentiable: $\nabla^{2} f(x)$ is positive semidefinite for all $x \in C$.

Guide: Consider one-dimensional sections of $f$.
Exercise 8 (!) (Carathéodory) ++
Show that, for any set $X \subseteq \mathbb{R}^{n}$, every element $x \in \operatorname{con} X$ can be written as a convex combination of at most $n+1$ elements of $X$.

Exercise 9 (!) (Convex Hulls of Compact Sets) ++
Let $X \subset \mathbb{R}^{n}$ be a compact set. Show that con $X$ is compact as well. Can we say something similar without assuming boundedness, i.e., are convex hulls of closed sets also closed?

Guide: Use Carathéodory's theorem.

Exercise 10 (!) (Semidefinite Cone) +
a) Show that the set $K_{n}^{S D P}$ of symmetric positive semidefinite matrices in $\mathbb{R}^{n \times n}$ is a pointed closed convex cone.
b) Show that the function

$$
f(X)= \begin{cases}-\log \operatorname{det} X^{-1}, & X \in K_{n}^{S D P} \\ +\infty, & \text { otherwise }\end{cases}
$$

is convex.

