Convex optimisation with applications to image processing

Part III, Michaelmas 2013

Jan Lellmann J.Lellmann@damtp.cam.ac.uk

Cambridge Image Analysis

Layout

Course format

- graduate level Part III, CCA, ...
- M/W/F 12-1pm, MR14
- 24 lectures
- 3-4 example sheets
- examinable (May/June 2014)
- CIA courses this year:
 - T. Valkonen Measure and Image, 11-12, MR14
 - C. Schönlieb Variational and PDE Methods, Lent

Image Processing

Goal:

Extract "useful" information from the data that we have...

...by using what we know about the problem.

The problem

original

noisy input

output?

Denoising

Denoising L2-TV

Denoising L1-TV

Inpainting

Inpainting

Segmentation

Course outline

- 1. Convex Analysis
 - existence
 - subdifferentials, optimality, certificatess
 - conjugacy, duality
- 2. Solvers
 - first-order
 - interior-point
 - min-cut/max-flow
- 3. Applications
 - convex models, TV, SVM
 - combinatorial problems, relaxation, segmentation
 - convex approximations, lifting
 - sparsity, compressed sensing

Literature

- Boyd/Vandenberghe: Convex Optimization
- Rockafellar/Wets: Variational Analysis
- Ben-Tal/Nemirovski: Lectures on Modern Convex Optimization
- Paragios/Chen/Faugeras: Handbook of Mathematical Models in Computer Vision

Convex optimisation with applications to image processing

Part III, Michaelmas 2013

Jan Lellmann J.Lellmann@damtp.cam.ac.uk

