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Mathematical Tripos Part II: Michaelmas Term 2014

Numerical Analysis – Lecture 1

1 The Poisson equation

Problem 1.1 (Approximation of ∇2) Our goal is to solve the Poisson equation

∇2u = f (x, y) ∈ Ω, (1.1)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 is the Laplace operator and Ω is an open connected domain of R2 with a Jordan
boundary, specified together with the Dirichlet boundary condition

u(x, y) = φ(x, y) (x, y) ∈ ∂Ω. (1.2)

(You may assume that f ∈ C(Ω), φ ∈ C2(∂Ω), but this can be relaxed by an approach outside the scope
of this course.) To this end we impose on Ω a square grid with uniform spacing of h > 0 and replace
(1.1) by a finite-difference formula. For simplicity, we require for the time being that ∂Ω ‘fits’ into the grid:
if a grid point lies inside Ω then all its neighbours are in cl Ω. We will discuss briefly in the sequel grids
that fail this condition.

Remark 1.2 Finite differences are neither the only nor, arguably, the best means of solving partial differ-
ential equations. Other methods abound: finite elements, boundary elements, spectral and pseudospec-
tral methods, finite-volume methods, vorticity methods, particle methods, meshless methods, gas-lattice
methods and, in the important special case of the Poisson equation (1.1), fast multipole methods. Yet,
finite difference are the simplest. The only additional ones that will feature in this lecture course are
spectral methods in chapter 3.

Since ∇2 = ∂2

∂x2 + ∂2

∂y2 , we need to consider a finite-difference approximation of second derivatives.

Proposition 1.3 Let g ∈ C4[a, b] and x ∈ (a + h, b − h). Then

g(x − h) − 2g(x) + g(x + h) = h2g′′(x) + 1
12

h4g(4) + O(h6). (1.3)

Proof. Expanding into Taylor series,

g(x + h) − g(x) = hg′(x) + 1
2!

h2g′′(x) + 1
3!

h3g′′′(x) + ∙ ∙ ∙

g(x − h) − g(x) = −hg′(x) + 1
2!

h2g′′(x) − 1
3!

h3g′′′(x) + ∙ ∙ ∙

and adding two expressions, we see that the terms with odd derivatives vanish, and the LHS of (1.3) is
equal to

∑p
k=1

2
(2k)!h

2kg(2k)(x) + O(h2p+2), where we took p = 2. �

Corollary 1.4 The approximation

u(x − h, y) + u(x + h, y) + u(x, y − h) + u(x, y + h) − 4u(x, y) ≈ h2∇2u(x, y)

produces a (local) error of O(h4).

Approximation 1.5 The aforementioned analysis justifies the five-point method

ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j = h2fi,j , (ih, jh) ∈ Ω, (1.4)

where fi,j = f(ih, jh) are given, and ui,j ≈ u(ih, jh) is an approximation to the exact solution. It is
usually denoted by the computational stencil
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Whenever (ih, jh) ∈ ∂Ω, we substitute appropriate Dirichlet boundary values. Note that the outcome
of our procedure is a set of linear algebraic equations, whose solution approximates the solution of the
Poisson equation (1.1) at the grid points.

Approximation 1.6 It is easy (but laborious) to produce higher-order methods. You may verify, for
example, that
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produces a local error of O(h6) (This scheme is just a linear combination of two five-point methods with
steps h and 2h, respectively) Needless to say, the implementation of this method is more complicated,
since we might be ‘missing’ points near the boundary. Moreover, the set of algebraic equations that need
be solved is less sparse than for the 5-point method, hence its solution is more expensive.

It is considerably easier to implement the nine-point method

�

��

�

��

�

��
�

��

�

��

�

��
�

��

�

��

�

��

1
6

1
6

1
6

1
6

2
3

2
3

2
3

2
3

− 10
3 ui,j = h2fi,j

but, as such, it again produces error of O(h4). However, this can be remedied by a clever trick of adding
the term 1

12h4∇2f to the right-hand side, with the 5-point approximation to h2∇2f , which increases the
order to O(h6) (see Exercise 1).

Matlab demo: Gain more intuition on such finite difference approximation of the Laplacian by looking
at http://www.maths.cam.ac.uk/undergrad/course/na/ii/stencil/stencil.php . Down-
load the Matlab GUI for Stencils and Images to see what effect differential operators have when applied
to photographs.

Problem 1.7 (Non-equispaced grids) Since the boundary often fails to fit exactly into a square grid,
we sometimes need to approximate ∇2 using non-equispaced points. Clearly, it is enough to be able
to approximate a second directional derivative w.r.t. each variable and subsequently ‘synthetize’ an
approximation to ∇2.

For example, suppose that grid points are given with the spacing t t th αh , where 0 < α ≤
1. It is easy to verify by a Taylor expansion (or better by a Lagrange interpolation) that

2
α + 1

g(x − h) −
2
α

g(x) +
2

α(α + 1)
g(x + αh) = g′′(x)h2 +

1
3
(α − 1)g′′′(x)h3 + O(h4),

with error of O(h3) (note that α = 1 gives, as expected, O(h4)).
Better approximation can be obtained by taking two equispaced points on the ‘interior’ side, i.e.

t t t th h αh as follows:

α − 1
α + 2

g(x − 2h) −
2(α − 2)
α + 1

g(x − h) +
α − 3

α
g(x) +

6
α(α + 1)(α + 2)

g(x + αh) = h2g′′(x) + O(h4).

2


