Mathematical Tripos Part II: Michaelmas Term 2014

Numerical Analysis - Lecture 3

Let $\widehat{u}_{i, j}=u(i h, j h)$ be the grid values of the exact solution of the Poisson equation, and let $e_{i, j}=$ $u_{i, j}-\widehat{u}_{i, j}$ be the pointwise error of the 5-point formula. Set $\boldsymbol{e}=\left(e_{i, j}\right) \in \mathbb{R}^{m^{2}}$.
Theorem 1.14 Subject to sufficient smoothness of the function f and of the boundary conditions, there exists a number $c>0$, independent of $h=\frac{1}{m+1}$, such that

$$
\|\boldsymbol{e}\| \leq c h
$$

Proof. 1) We already know (having constructed the 5-point formula by matching Taylor expansions) that

$$
\widehat{u}_{i-1, j}+\widehat{u}_{i+1, j}+\widehat{u}_{i, j-1}+\widehat{u}_{i, j+1}-4 \widehat{u}_{i, j}=h^{2} f_{i, j}+\eta_{i, j}, \quad \eta_{i, j}=\mathcal{O}\left(h^{4}\right) .
$$

Subtracting this from (1.5), we obtain

$$
e_{i-1, j}+e_{i+1, j}+e_{i, j-1}+e_{i, j+1}-4 e_{i, j}=\eta_{i, j}
$$

or, in the matrix form, $A \boldsymbol{e}=\boldsymbol{\eta}$, where A is symmetric (negative definite). It follows that

$$
A \boldsymbol{e}=\boldsymbol{\eta} \Rightarrow \boldsymbol{e}=A^{-1} \boldsymbol{\eta} \Rightarrow\|\boldsymbol{e}\| \leq\left\|A^{-1}\right\|\|\boldsymbol{\eta}\| .
$$

2) Since every component of $\boldsymbol{\eta}$ satisfies $\left|\eta_{i, j}\right|^{2}<c^{2} h^{8}$, where $h=\frac{1}{m+1}$, and there are m^{2} components, we have

$$
\|\boldsymbol{\eta}\|^{2}=\sum_{i=1}^{m} \sum_{j=1}^{m}\left|\eta_{i, j}\right|^{2} \leq c^{2} m^{2} h^{8}<c^{2} \frac{1}{h^{2}} h^{8}=c^{2} h^{6} \Rightarrow\|\boldsymbol{\eta}\| \leq c h^{3} .
$$

3) The matrix A is symmetric, hence so is A^{-1} and therefore $\left\|A^{-1}\right\|=\rho\left(A^{-1}\right)$. Here $\rho\left(A^{-1}\right)$ is the spectral radius of A^{-1}, that is $\rho\left(A^{-1}\right)=\max _{i}\left|\lambda_{i}\right|$, where λ_{i} are the eigenvalues of A^{-1}. The eigenvalues of A^{-1} are the reciprocals of the eigenvalues of A, and the latter are given by Proposition 1.12. Thus,

$$
\left\|A^{-1}\right\|=\frac{1}{4} \max _{k, \ell=1 \ldots m}\left(\sin ^{2} \frac{k \pi h}{2}+\sin ^{2} \frac{\ell \pi h}{2}\right)^{-1}=\frac{1}{8 \sin ^{2}\left(\frac{1}{2} \pi h\right)}<\frac{1}{8 h^{2}} .
$$

Therefore $\|\boldsymbol{e}\| \leq\left\|A^{-1}\right\|\|\boldsymbol{\eta}\| \leq$ ch for some constant $c>0$.
Observation 1.15 (Special structure of 5-point equations) We wish to motivate and introduce a family of efficient solution methods for the 5-point equations: the fast Poisson solvers. Thus, suppose that we are solving $\nabla^{2} u=f$ in a square $m \times m$ grid with the 5-point formula (all this can be generalized a great deal, e.g. to the nine-point formula). Let the grid be enumerated in natural ordering, i.e. by columns. Thus, the linear system $A \boldsymbol{u}=\boldsymbol{b}$ can be written explicitly in the block form

$$
\underbrace{\left[\begin{array}{cccc}
B & I & & \\
I & B & \ddots & \\
& \ddots & \ddots & I \\
& & I & B
\end{array}\right]}_{A}\left[\begin{array}{c}
\boldsymbol{u}_{1} \\
\boldsymbol{u}_{2} \\
\vdots \\
\boldsymbol{u}_{m}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{b}_{1} \\
\boldsymbol{b}_{2} \\
\vdots \\
\boldsymbol{b}_{m}
\end{array}\right], \quad B=\left[\begin{array}{rrrr}
-4 & 1 & & \\
1 & -4 & \ddots & \\
\ddots & \ddots & 1 \\
& 1 & -4
\end{array}\right]_{m \times m},
$$

where $\boldsymbol{u}_{k}, \boldsymbol{b}_{k} \in \mathbb{R}^{m}$ are portions of \boldsymbol{u} and \boldsymbol{b}, respectively, and B is a TST-matrix which means tridiagonal, symmetric and Toeplitz (i.e., constant along diagonals). By Exercise 4, its eigenvalues and orthonormal eigenvectors are given as

$$
B \boldsymbol{q}_{\ell}=\lambda_{\ell} \boldsymbol{q}_{\ell}, \quad \lambda_{\ell}=-4+2 \cos \frac{\ell \pi}{m+1}, \quad \boldsymbol{q}_{\ell}=\gamma_{m}\left(\sin \frac{\ell j \pi}{m+1}\right)_{j=1}^{m}, \quad \ell=1 . . m
$$

where $\gamma_{m}=\sqrt{\frac{2}{m+1}}$ is the normalization factor. Hence $B=Q D Q^{-1}=Q D Q$, where $D=\operatorname{diag}\left(\lambda_{\ell}\right)$ and $Q=Q^{T}=\left(q_{\ell j}\right)$. Note that all $m \times m$ TST matrices share the same full set of eigenvectors, hence they all commute!

Method 1.16 (The Hockney method) Set $\boldsymbol{v}_{k}=Q \boldsymbol{u}_{k}, \boldsymbol{c}_{k}=Q \boldsymbol{b}_{k}$, therefore our system becomes

$$
\left[\begin{array}{cccc}
D & I & & \\
I & D & \ddots & \\
& \ddots & \ddots & I \\
& & I & D
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{v}_{1} \\
\boldsymbol{v}_{2} \\
\vdots \\
\boldsymbol{v}_{m}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{c}_{1} \\
\boldsymbol{c}_{2} \\
\vdots \\
\boldsymbol{c}_{m}
\end{array}\right]
$$

Let us by this stage reorder the grid by rows, instead of by columns.. In other words, we permute $\boldsymbol{v} \mapsto \widehat{\boldsymbol{v}}=P \boldsymbol{v}, \boldsymbol{c} \mapsto \widehat{\boldsymbol{c}}=P \boldsymbol{c}$, so that the portion $\widehat{\boldsymbol{c}}_{1}$ is made out of the first components of the portions $\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{m}$, the portion $\widehat{\boldsymbol{c}}_{2}$ out of the second components and so on. This results in new system

$$
\left[\begin{array}{cccc}
\Lambda_{1} & & & \\
& \Lambda_{2} & & \\
& & \ddots & \\
& & & \Lambda_{m}
\end{array}\right]\left[\begin{array}{c}
\widehat{\boldsymbol{v}}_{1} \\
\widehat{\boldsymbol{v}}_{2} \\
\vdots \\
\widehat{\boldsymbol{v}}_{m}
\end{array}\right]=\left[\begin{array}{c}
\widehat{\boldsymbol{c}}_{1} \\
\widehat{\boldsymbol{c}}_{2} \\
\vdots \\
\widehat{\boldsymbol{c}}_{m}
\end{array}\right], \quad \Lambda_{k}=\left[\begin{array}{cccc}
\lambda_{k} & 1 & & \\
1 & \lambda_{k} & 1 & \\
& \ddots & \ddots & \ddots \\
& & 1 & \lambda_{k}
\end{array}\right]_{m \times m}, \quad k=1, \ldots, m
$$

These are m uncoupled systems, $\Lambda_{k} \widehat{\boldsymbol{v}}_{k}=\widehat{\boldsymbol{c}}_{k}$ for $k=1 \ldots m$. Being tridiagonal, each such system can be solved fast, at the cost of $\mathcal{O}(m)$. Thus, the steps of the algorithm and their computational cost are as follows.

1. Form the products $\boldsymbol{c}_{k}=Q \boldsymbol{b}_{k}, \quad k=1 \ldots m \ldots \ldots \ldots \ldots \mathcal{O}\left(m^{3}\right)$
2. Solve $m \times m$ tridiagonal systems $\Lambda_{k} \widehat{\boldsymbol{v}}_{k}=\widehat{\boldsymbol{c}}_{k}, \quad k=1 \ldots m \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \mathcal{O}\left(m^{2}\right)$
3. Form the products $\boldsymbol{u}_{k}=Q \boldsymbol{v}_{k}, \quad k=1 \ldots m \quad \ldots \ldots \ldots \ldots \quad \mathcal{O}\left(m^{3}\right)$
(Permutations $\boldsymbol{c} \mapsto \widehat{\boldsymbol{c}}$ and $\widehat{\boldsymbol{v}} \mapsto \boldsymbol{v}$ are basically free.)
Method 1.17 (Improved Hockney algorithm) We observe that the computational bottleneck is to be found in the $2 m$ matrix-vector products by the matrix Q. Recall further that the elements of Q are $q_{\ell j}=\gamma_{m} \sin \frac{\pi \ell j}{m+1}$. This special form lends itself to a considerable speedup in matrix multiplication. Before making the problem simpler, however, let us make it more complicated! We write a typical product in the form

$$
\begin{equation*}
(Q \boldsymbol{y})_{\ell}=\sum_{j=1}^{m} \sin \frac{\pi \ell j}{m+1} y_{j}=\operatorname{Im} \sum_{j=0}^{m} \exp \frac{\mathrm{i} \pi \ell j}{m+1} y_{j}=\operatorname{Im} \sum_{j=0}^{2 m+1} \exp \frac{2 \mathrm{i} \pi \ell j}{2 m+2} y_{j}, \quad \ell=1, \ldots, m \tag{1.8}
\end{equation*}
$$

where $y_{m+1}=\cdots=y_{2 m+1}=0$.
Problem 1.18 (The discrete Fourier transform) Let Π_{n} be the space of all bi-infinite complex n periodic sequences $\boldsymbol{x}=\left\{x_{\ell}\right\}_{\ell \in \mathbb{Z}}$ (such that $x_{\ell+n}=x_{\ell}$). Set $\omega_{n}=\exp \frac{2 \pi \mathrm{i}}{n}$, the primitive root of unity of degree n. The discrete Fourier transform (DFT) of \boldsymbol{x} is

$$
\mathcal{F}_{n}: \Pi_{n} \rightarrow \Pi_{n} \quad \text { such that } \quad \boldsymbol{y}=\mathcal{F}_{n} \boldsymbol{x}, \quad \text { where } \quad y_{j}=\frac{1}{n} \sum_{\ell=0}^{n-1} \omega_{n}^{-j \ell} x_{\ell}, \quad j=0 \ldots n-1 .
$$

Trivial exercise: You can easily prove that \mathcal{F}_{n} is an isomorphism of Π_{n} onto itself and that

$$
\boldsymbol{x}=\mathcal{F}_{n}^{-1} \boldsymbol{y}, \quad \text { where } \quad x_{\ell}=\sum_{j=0}^{n-1} \omega_{n}^{j \ell} y_{j}, \quad \ell=0 \ldots n-1 .
$$

An important observation: Thus, multiplication by Q in (1.8) can be reduced to calculating an inverse of DFT.

Since we need to evaluate DFT (or its inverse) only in a single period, we can do so by multiplying a vector by a matrix, at the cost of $\mathcal{O}\left(n^{2}\right)$ operations. This, however, is suboptimal and the cost of calculation can be lowered a great deal!

