Dr] Lellmann
Mathematical Tripos Part II: Michaelmas Term 2014

Numerical Analysis — Lecture 4

Algorithm 1.19 (The fast Fourier transform (FFT)) We assume that n is a power of 2,i.e. n = 2m = 27,
and for y € Ily,,, denote by

(0)

y(E) = {y2j}iez and Yy ={y2j+1}iez

the even and odd portions of y, respectively. Note that y® y© e11,,.
Suppose that we already know the inverse DFT of both ‘short’ sequences,

2® = F1y® 50) _ 1,00

m

It is then possible to assemble x = F,,1y in a small number of operations. Since w3 = 1, we obtain

w3, = wmy, and
2m—1 m—
_ CA
ZmeyJ = Z 2J+ij
7=0
m—1 m—1
E E O
= u)my()+w2m ijlyg) :.SC§)+w§mx§)a 410,7771*1
Jj=0 3=0

Therefore, it costs just m products to evaluate the first half of x, provided that ™ and z(©) are known.
It actually costs nothing to evaluate the second half, since

wI(m+6 — it witt — _t = Tonte = xéE) — Wiz (0)7 {=0,...,m—1.
To execute FFT, we start from vectors of unit length and in each s-th stage, s = 1...p, assemble 2P~°

vectors of length 2° from vectors of length 2°71: this costs 27752571 = 2P~! products. Altogether, the
cost of FFT is p2P~! = 1nlog, n products.

[0]1]2[3]4][5]6]7] —1 block of length 27

1

/ AN

[0]2]4[6] « 2P7¢ blocks of length 2¢
AN 7N

/!
271 blocks of ength 2
/N

/N /N /N
@ @ «— 2P blocks of length 1

For n = 1024 = 219, say, the cost is ~ 5 x 10% products, compared to ~ 10° for naive matrix multiplica-
tion! For n = 2%° the respective numbers are ~ 1.05 x 107 and ~ 1.1 x 10'2, which represents a saving
by a factor of more than 105.

Matlab demo: Check out the online animation for computing the FFT at http://www.maths.cam.
ac.uk/undergrad/course/na/ii/fft_gui/fft_gui.php and download the Matlab GUI from
there to follow the computation of each single FFT term.

Example 1.20 Computation of FFT for n = 4 in general, and for the vector y = (1,1, —1, —1) in particu-
lar.

[02=01+1; [1, =21 +1i31 [2, =01 — 13 [3 =21 —i3{ | [0]2+2i]0]2-2i]
/N 7N
[01=00+20[21=00-20] [Li=lo+30[31=10—-30]| =
N

7N 7 7N N
(1] (=] (][]

2 Partial differential equations of evolution

Method 2.1 We consider the solution of the diffusion equation

ou 0%u
—_— = <z<l1 >
ot 0x?’ 0szsl t20,
with initial conditions u(xz,0) = ug(x) for t = 0 and Dirichlet boundary conditions u(0,t) = ¢o(t) atz = 0

and u(1,t) = ¢1(t) at x = 1. By Taylor’s expansion

% = tlule,t+k) —ulz,)] + Ok), k= At,
9%u(x,t)

3 = h_12 [u(z — h,t) — 2u(z,t) + u(z + h,t)] + O(h?), h=Az,
so that, for the true solution, we obtain
u(z,t+ k) = u(z,t) + % [u(z — h,t) — 2u(z,t) + u(z + h,t)] + O(K*+kh?). (2.1)

That motivates the numerical scheme for approximation u}, ~ u(z,, t,) on the rectangular mesh (z,,, t,,)
(mh,nk):
uptt =l o (ul = 2ul ol), m=1.M. (2.2)

Hereh:M;Jrl and,u:%
ph?, so that the local truncation error of the scheme is O(h*). Substituting whenever necessary initial
conditions v, and boundary conditions u{ and u},,,, we possess enough information to advance in
(2.2) from u™ := [u}, ..., u},] to w1t = [t u .

Similarly to ODEs or Poisson equation, we say that the method is convergent if, for a fixed p, and for
every T > 0, we have

= (AA—;)Q is the so-called Courant number. With ;1 being fixed, we have k =

}llin%) |upy, — w(Tm,t,)] =0 uniformly for (z,,,t,) € [0,1]x[0,T].

In the present case, however, a method has an extra parameter y, and it is entirely possible for a method
to converge for some choice of 1 and diverge otherwise.
Theorem 2.2 If i1 < L, then method (2.2) converges.

Proof. Let e}, := u)}, — u(mh, nk) be the error of approximation, and let e” = [e7, ..., e%,] with ||e"|| :=
max,, |e |. Convergence is equivalent to

lim max |e"||=0
h—0 1<n<T/k

for every constant 7' > 0. Subtracting (2.1) from (2.2), we obtain
et = en +plen 1 — 2, +en) + O
= pep1 + (1 =2, + peg, o + O(hY).
Then
le™ | = max |ep | < (2p+ 1 — 2ul) "] + ch® = [le"]| + ch?,
by virtue of ;1 < 1. Since ||€°|| = 0, induction yields

||en||§cnh4§%h4:%h2ﬂo (h — 0) 0

Discussion 2.3 In practice we wish to choose h and k of comparable size, therefore u = k/h? is likely
to be large. Consequently, the restriction of the last theorem is disappointing: unless we are willing to
advance with tiny time step k, the method (2.2) is of limited practical interest. The situation is similar
to stiff ODEs: like the Euler method, the scheme (2.2) is simple, plausible, explicit, easy to execute and
analyse — but of very limited utility. ...

Matlab demo: Download the Matlab GUI for Stability of 1D PDEs from http://www.maths.cam.
ac.uk/undergrad/course/nalii/pde_stability/pde_stability.php and solve the diffu-
sion equation in the interval [0, 1] with method (2.2) and p = 0.51 > 1. Using (as preset) 100 grid
points to discretise [0, 1] will then require the time steps to be 5.1 - 107°. The solution will evolve very
slowly, but wait long enough to see what happens!

