
Dr J Lellmann

Mathematical Tripos Part II: Michaelmas Term 2014

Numerical Analysis – Lecture 4

Algorithm 1.19 (The fast Fourier transform (FFT)) We assume that n is a power of 2, i.e. n = 2m = 2p,
and for y ∈ Π2m, denote by

y(E) = {y2j}j∈Z and y(O) = {y2j+1}j∈Z

the even and odd portions of y, respectively. Note that y(E), y(O) ∈ Πm.
Suppose that we already know the inverse DFT of both ‘short’ sequences,

x(E) = F−1
m y(E), x(O) = F−1

m y(O).

It is then possible to assemble x = F−1
2my in a small number of operations. Since ω2m

2m = 1, we obtain
ω2

2m = ωm, and

x` =
2m−1∑

j=0

ωj`
2myj =

m−1∑

j=0

ω2j`
2my2j +

m−1∑

j=0

ω
(2j+1)`
2m y2j+1

=
m−1∑

j=0

ωj`
my

(E)
j + ω`

2m

m−1∑

j=0

ωj`
my

(O)
j = x

(E)
` + ω`

2mx
(O)
` , ` = 0, . . . ,m − 1.

Therefore, it costs just m products to evaluate the first half of x, provided that x(E) and x(O) are known.
It actually costs nothing to evaluate the second half, since

ωj(m+`)
m = ωj`

m , ωm+`
2m = −ω`

2m ⇒ xm+` = x
(E)
` − ω`

2mx
(O)
` , ` = 0, . . . ,m−1.

To execute FFT, we start from vectors of unit length and in each s-th stage, s = 1...p, assemble 2p−s

vectors of length 2s from vectors of length 2s−1: this costs 2p−s2s−1 = 2p−1 products. Altogether, the
cost of FFT is p2p−1 = 1

2n log2 n products.

0 1 2 3 4 5 6 7
↗ ↖

← 1 block of length 2p

0 2 4 6
↗ ↖

1 3 5 7
↗ ↖

← 2p−s blocks of length 2s

0 4
↗↖

2 6
↗↖

1 5
↗↖

3 7
↗↖

← 2p−1 blocks of length 2

0 4 2 6 1 5 3 7 ← 2p blocks of length 1

For n = 1024 = 210, say, the cost is ≈ 5 × 103 products, compared to ≈ 106 for naive matrix multiplica-
tion! For n = 220 the respective numbers are ≈ 1.05 × 107 and ≈ 1.1 × 1012, which represents a saving
by a factor of more than 105.

Matlab demo: Check out the online animation for computing the FFT at http://www.maths.cam.
ac.uk/undergrad/course/na/ii/fft_gui/fft_gui.php and download the Matlab GUI from
there to follow the computation of each single FFT term.

Example 1.20 Computation of FFT for n = 4 in general, and for the vector y = (1, 1,−1,−1) in particu-
lar.

02 = 01 + 11 12 = 21 + i31 22 = 01 − 11 32 = 21 − i31

↗ ↖
01 = 00 + 20 21 = 00 − 20

↗↖
11 = 10 + 30 31 = 10 − 30

↗↖
00 20 10 30

⇒

0 2 + 2i 0 2− 2i
↗ ↖

0 2
↗↖

0 2
↗↖

+1 −1 +1 −1

7

2 Partial differential equations of evolution

Method 2.1 We consider the solution of the diffusion equation

∂u

∂t
=

∂2u

∂x2
, 0 ≤ x ≤ 1, t ≥ 0,

with initial conditions u(x, 0) = u0(x) for t = 0 and Dirichlet boundary conditions u(0, t) = φ0(t) at x = 0
and u(1, t) = φ1(t) at x = 1. By Taylor’s expansion

∂u(x,t)
∂t

= 1
k

[
u(x, t + k)− u(x, t)

]
+O(k), k = Δt ,

∂2u(x,t)
∂x2 = 1

h2

[
u(x− h, t)− 2u(x, t) + u(x + h, t)

]
+O(h2), h = Δx ,

so that, for the true solution, we obtain

u(x, t + k) = u(x, t) + k
h2

[
u(x− h, t)− 2u(x, t) + u(x + h, t)

]
+O(k2+kh2) . (2.1)

That motivates the numerical scheme for approximation un
m ≈ u(xm, tn) on the rectangular mesh (xm, tn) =

(mh, nk):
un+1

m = un
m + μ

(
un

m−1 − 2un
m + un

m+1

)
, m = 1...M . (2.2)

Here h = 1
M+1

and μ = k
h2 = Δt

(Δx)2
is the so-called Courant number. With μ being fixed, we have k =

μh2, so that the local truncation error of the scheme is O(h4). Substituting whenever necessary initial
conditions u0

m and boundary conditions un
0 and un

M+1, we possess enough information to advance in
(2.2) from un := [un

1 , . . . , un
M] to un+1 := [un+1

1 , . . . , un+1
M].

Similarly to ODEs or Poisson equation, we say that the method is convergent if, for a fixed μ, and for
every T > 0, we have

lim
h→0
|un

m − u(xm, tn)| = 0 uniformly for (xm, tn) ∈ [0, 1]×[0, T] .

In the present case, however, a method has an extra parameter μ, and it is entirely possible for a method
to converge for some choice of μ and diverge otherwise.

Theorem 2.2 If μ ≤ 1
2 , then method (2.2) converges.

Proof. Let en
m := un

m − u(mh, nk) be the error of approximation, and let en = [en
1 , . . . , en

M] with ‖en‖ :=
maxm |en

m|. Convergence is equivalent to

lim
h→0

max
1≤n≤T/k

‖en‖ = 0

for every constant T > 0. Subtracting (2.1) from (2.2), we obtain

en+1
m = en

m + μ(en
m−1 − 2en

m + en
m+1) +O(h4)

= μen
m−1 + (1− 2μ)en

m + μen
m+1 +O(h4).

Then
‖en+1‖ = max

m
|en+1

m | ≤ (2μ + |1− 2μ|) ‖en‖+ ch4 = ‖en‖+ ch4,

by virtue of μ ≤ 1
2 . Since ‖e0‖ = 0, induction yields

‖en‖ ≤ cnh4 ≤ cT
k

h4 = cT
μ

h2 → 0 (h→ 0) �

Discussion 2.3 In practice we wish to choose h and k of comparable size, therefore μ = k/h2 is likely
to be large. Consequently, the restriction of the last theorem is disappointing: unless we are willing to
advance with tiny time step k, the method (2.2) is of limited practical interest. The situation is similar
to stiff ODEs: like the Euler method, the scheme (2.2) is simple, plausible, explicit, easy to execute and
analyse – but of very limited utility. . . .

Matlab demo: Download the Matlab GUI for Stability of 1D PDEs from http://www.maths.cam.
ac.uk/undergrad/course/na/ii/pde_stability/pde_stability.php and solve the diffu-
sion equation in the interval [0, 1] with method (2.2) and μ = 0.51 > 1

2 . Using (as preset) 100 grid
points to discretise [0, 1] will then require the time steps to be 5.1 ∙ 10−5. The solution will evolve very
slowly, but wait long enough to see what happens!

8

