Mathematical Tripos Part II: Michaelmas Term 2014
 Numerical Analysis - Lecture 4

Algorithm 1.19 (The fast Fourier transform (FFT)) We assume that n is a power of 2, i.e. $n=2 m=2^{p}$, and for $\boldsymbol{y} \in \Pi_{2 m}$, denote by

$$
\boldsymbol{y}^{(\mathrm{E})}=\left\{y_{2 j}\right\}_{j \in \mathbb{Z}} \quad \text { and } \quad \boldsymbol{y}^{(\mathrm{O})}=\left\{y_{2 j+1}\right\}_{j \in \mathbb{Z}}
$$

the even and odd portions of \boldsymbol{y}, respectively. Note that $\boldsymbol{y}^{(\mathrm{E})}, \boldsymbol{y}^{(\mathrm{O})} \in \Pi_{m}$.
Suppose that we already know the inverse DFT of both 'short' sequences,

$$
\boldsymbol{x}^{(\mathrm{E})}=\mathcal{F}_{m}^{-1} \boldsymbol{y}^{(\mathrm{E})}, \quad \boldsymbol{x}^{(\mathrm{O})}=\mathcal{F}_{m}^{-1} \boldsymbol{y}^{(\mathrm{O})} .
$$

It is then possible to assemble $\boldsymbol{x}=\mathcal{F}_{2 m}^{-1} \boldsymbol{y}$ in a small number of operations. Since $\omega_{2 m}^{2 m}=1$, we obtain $\omega_{2 m}^{2}=\omega_{m}$, and

$$
\begin{aligned}
x_{\ell}=\sum_{j=0}^{2 m-1} \omega_{2 m}^{j \ell} y_{j} & =\sum_{j=0}^{m-1} \omega_{2 m}^{2 j \ell} y_{2 j}+\sum_{j=0}^{m-1} \omega_{2 m}^{(2 j+1) \ell} y_{2 j+1} \\
& =\sum_{j=0}^{m-1} \omega_{m}^{j \ell} y_{j}^{(\mathrm{E})}+\omega_{2 m}^{\ell} \sum_{j=0}^{m-1} \omega_{m}^{j \ell} y_{j}^{(\mathrm{O})}=x_{\ell}^{(\mathrm{E})}+\omega_{2 m}^{\ell} x_{\ell}^{(\mathrm{O})}, \quad \ell=0, \ldots, m-1 .
\end{aligned}
$$

Therefore, it costs just m products to evaluate the first half of \boldsymbol{x}, provided that $\boldsymbol{x}^{(\mathrm{E})}$ and $\boldsymbol{x}^{(\mathrm{O})}$ are known. It actually costs nothing to evaluate the second half, since

$$
\omega_{m}^{j(m+\ell)}=\omega_{m}^{j \ell}, \quad \omega_{2 m}^{m+\ell}=-\omega_{2 m}^{\ell} \quad \Rightarrow \quad x_{m+\ell}=x_{\ell}^{(\mathrm{E})}-\omega_{2 m}^{\ell} x_{\ell}^{(\mathrm{O})}, \quad \ell=0, \ldots, m-1 .
$$

To execute FFT, we start from vectors of unit length and in each s-th stage, $s=1 \ldots p$, assemble 2^{p-s} vectors of length 2^{s} from vectors of length 2^{s-1} : this costs $2^{p-s} 2^{s-1}=2^{p-1}$ products. Altogether, the cost of FFT is $p 2^{p-1}=\frac{1}{2} n \log _{2} n$ products.

For $n=1024=2^{10}$, say, the cost is $\approx 5 \times 10^{3}$ products, compared to $\approx 10^{6}$ for naive matrix multiplication! For $n=2^{20}$ the respective numbers are $\approx 1.05 \times 10^{7}$ and $\approx 1.1 \times 10^{12}$, which represents a saving by a factor of more than 10^{5}.

Matlab demo: Check out the online animation for computing the FFT at http://www.maths.cam. ac.uk/undergrad/course/na/ii/fft_gui/fft_gui.php and download the Matlab GUI from there to follow the computation of each single FFT term.

Example 1.20 Computation of FFT for $n=4$ in general, and for the vector $\boldsymbol{y}=(1,1,-1,-1)$ in particular.

2 Partial differential equations of evolution

Method 2.1 We consider the solution of the diffusion equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leq x \leq 1, \quad t \geq 0
$$

with initial conditions $u(x, 0)=u_{0}(x)$ for $t=0$ and Dirichlet boundary conditions $u(0, t)=\phi_{0}(t)$ at $x=0$ and $u(1, t)=\phi_{1}(t)$ at $x=1$. By Taylor's expansion

$$
\begin{aligned}
\frac{\partial u(x, t)}{\partial t} & =\frac{1}{k}[u(x, t+k)-u(x, t)]+\mathcal{O}(k), & & k=\Delta t \\
\frac{\partial^{2} u(x, t)}{\partial x^{2}} & =\frac{1}{h^{2}}[u(x-h, t)-2 u(x, t)+u(x+h, t)]+\mathcal{O}\left(h^{2}\right), & & h=\Delta x
\end{aligned}
$$

so that, for the true solution, we obtain

$$
\begin{equation*}
u(x, t+k)=u(x, t)+\frac{k}{h^{2}}[u(x-h, t)-2 u(x, t)+u(x+h, t)]+\mathcal{O}\left(k^{2}+k h^{2}\right) . \tag{2.1}
\end{equation*}
$$

That motivates the numerical scheme for approximation $u_{m}^{n} \approx u\left(x_{m}, t_{n}\right)$ on the rectangular mesh $\left(x_{m}, t_{n}\right)=$ ($m h, n k$):

$$
\begin{equation*}
u_{m}^{n+1}=u_{m}^{n}+\mu\left(u_{m-1}^{n}-2 u_{m}^{n}+u_{m+1}^{n}\right), \quad m=1 \ldots M . \tag{2.2}
\end{equation*}
$$

Here $h=\frac{1}{M+1}$ and $\mu=\frac{k}{h^{2}}=\frac{\Delta t}{(\Delta x)^{2}}$ is the so-called Courant number. With μ being fixed, we have $k=$ μh^{2}, so that the local truncation error of the scheme is $\mathcal{O}\left(h^{4}\right)$. Substituting whenever necessary initial conditions u_{m}^{0} and boundary conditions u_{0}^{n} and u_{M+1}^{n}, we possess enough information to advance in (2.2) from $\boldsymbol{u}^{n}:=\left[u_{1}^{n}, \ldots, u_{M}^{n}\right]$ to $\boldsymbol{u}^{n+1}:=\left[u_{1}^{n+1}, \ldots, u_{M}^{n+1}\right]$.

Similarly to ODEs or Poisson equation, we say that the method is convergent if, for a fixed μ, and for every $T>0$, we have

$$
\lim _{h \rightarrow 0}\left|u_{m}^{n}-u\left(x_{m}, t_{n}\right)\right|=0 \quad \text { uniformly for } \quad\left(x_{m}, t_{n}\right) \in[0,1] \times[0, T]
$$

In the present case, however, a method has an extra parameter μ, and it is entirely possible for a method to converge for some choice of μ and diverge otherwise.
Theorem 2.2 If $\mu \leq \frac{1}{2}$, then method (2.2) converges.
Proof. Let $e_{m}^{n}:=u_{m}^{n}-u(m h, n k)$ be the error of approximation, and let $\boldsymbol{e}^{n}=\left[e_{1}^{n}, \ldots, e_{M}^{n}\right]$ with $\left\|\boldsymbol{e}^{n}\right\|:=$ $\max _{m}\left|e_{m}^{n}\right|$. Convergence is equivalent to

$$
\lim _{h \rightarrow 0} \max _{1 \leq n \leq T / k}\left\|e^{n}\right\|=0
$$

for every constant $T>0$. Subtracting (2.1) from (2.2), we obtain

$$
\begin{aligned}
e_{m}^{n+1} & =e_{m}^{n}+\mu\left(e_{m-1}^{n}-2 e_{m}^{n}+e_{m+1}^{n}\right)+\mathcal{O}\left(h^{4}\right) \\
& =\mu e_{m-1}^{n}+(1-2 \mu) e_{m}^{n}+\mu e_{m+1}^{n}+\mathcal{O}\left(h^{4}\right)
\end{aligned}
$$

Then

$$
\left\|\boldsymbol{e}^{n+1}\right\|=\max _{m}\left|e_{m}^{n+1}\right| \leq(2 \mu+|1-2 \mu|)\left\|\boldsymbol{e}^{n}\right\|+c h^{4}=\left\|e^{n}\right\|+c h^{4}
$$

by virtue of $\mu \leq \frac{1}{2}$. Since $\left\|e^{0}\right\|=0$, induction yields

$$
\left\|e^{n}\right\| \leq c n h^{4} \leq \frac{c T}{k} h^{4}=\frac{c T}{\mu} h^{2} \rightarrow 0 \quad(h \rightarrow 0)
$$

Discussion 2.3 In practice we wish to choose h and k of comparable size, therefore $\mu=k / h^{2}$ is likely to be large. Consequently, the restriction of the last theorem is disappointing: unless we are willing to advance with tiny time step k, the method (2.2) is of limited practical interest. The situation is similar to stiff ODEs: like the Euler method, the scheme (2.2) is simple, plausible, explicit, easy to execute and analyse - but of very limited utility....

Matlab demo: Download the Matlab GUI for Stability of 1D PDEs from http://www.maths.cam. ac.uk/undergrad/course/na/ii/pde_stability/pde_stability.php and solve the diffusion equation in the interval $[0,1]$ with method (2.2) and $\mu=0.51>\frac{1}{2}$. Using (as preset) 100 grid points to discretise $[0,1]$ will then require the time steps to be $5.1 \cdot 10^{-5}$. The solution will evolve very slowly, but wait long enough to see what happens!

