Mathematical Tripos Part II: Michaelmas Term 2014

Numerical Analysis - Lecture 6

Definition 2.11 (Normal matrices) We say that a matrix A is normal if $A=Q D \bar{Q}^{T}$, where D is a (complex) diagonal matrix and Q is a unitary matrix (such that $Q \bar{Q}^{T}=I$). In other words, a matrix is normal if it has a complete set of orthonormal eigenvectors.

Examples of the real normal matrices, besides the familiar symmetric matrices $\left(A=A^{T}\right)$, inlclude also the matrices which are skew-symmetric $\left(A=-A^{T}\right)$, or more generally the matrices with skew-symmetric off-diagonal part.

Proposition 2.12 If A is normal, then $\|A\|=\rho(A)$.
Proof. For any complex matrix B, we have $\|B\|=\sup \frac{\|B \boldsymbol{x}\|}{\|\boldsymbol{x}\|}$, and if \boldsymbol{w} be an eigenvector of B, then $\|B \boldsymbol{w}\|=|\lambda|\|\boldsymbol{w}\|$. So, we deduce that

$$
\rho(B) \leq\|B\| \quad \forall B \in \mathbb{C}^{n \times n} \quad \text { (and for every vector norm }\|\cdot\| \text {). }
$$

Next, let A be normal and recall that unitary matrices are isometries with respect to the Euclidean norm, i.e., $\|Q \boldsymbol{v}\|=\|\boldsymbol{v}\|$ for any \boldsymbol{v}. Therefore (for the Euclidean norm)

$$
\|A \boldsymbol{v}\|=\left\|Q D \bar{Q}^{T} \boldsymbol{v}\right\|=\left\|D \bar{Q}^{T} \boldsymbol{v}\right\|=\|D \boldsymbol{u}\|,
$$

where $\boldsymbol{u}=\bar{Q}^{T} \boldsymbol{v}$, hence $\|\boldsymbol{u}\|=\|\boldsymbol{v}\|$. Finally D is diagonal and similar to A, therefore $\operatorname{diag} D=\sigma(A)$ and $\|D\|=\rho(A)$, hence

$$
\|A \boldsymbol{v}\|=\|D \boldsymbol{u}\| \leq\|D\|\|\boldsymbol{u}\|=\rho(A)\|\boldsymbol{v}\| .
$$

Thus $\|A\| \leq \rho(A)$, hence $\|A\|=\rho(A)$.
Remark 2.13 More generally, one can prove that $\|A\|=\left[\rho\left(A \bar{A}^{T}\right)\right]^{1 / 2}$, and the previous result can be deduced from that formula.

Example 2.14 (Crank-Nicolson method for diffusion equation) Let

$$
u_{m}^{n+1}-u_{m}^{n}=\frac{1}{2} \mu\left(u_{m-1}^{n+1}-2 u_{m}^{n+1}+u_{m+1}^{n+1}\right)+\frac{1}{2} \mu\left(u_{m-1}^{n}-2 u_{m}^{n}+u_{m+1}^{n}\right), \quad m=1 \ldots M .
$$

Then $\boldsymbol{u}^{n+1}=B^{-1} C \boldsymbol{u}^{n}$, where the matrices B and C are Toeplitz symmetric tridiagonal (TST),

$$
\boldsymbol{u}^{n+1}=B^{-1} C \boldsymbol{u}^{n}, \quad B=\left[\begin{array}{cccc}
1+\mu-\frac{1}{2} \mu & & \\
-\frac{1}{2} \mu & 1+\mu & \ddots & \\
\ddots & \ddots & -\frac{1}{2} \mu \\
& & -\frac{1}{2} \mu & 1+\mu
\end{array}\right], \quad C=\left[\begin{array}{cccc}
1-\mu & \frac{1}{2} \mu & & \\
\frac{1}{2} \mu & 1-\mu & \ddots & \\
& \ddots & \ddots & \frac{1}{2} \mu \\
& & \frac{1}{2} \mu & 1-\mu
\end{array}\right]
$$

All $M \times M$ TST matrices share the same eigenvectors, hence so does $B^{-1} C$. Moreover, these eigenvectors are orthogonal. Therefore, also $A=B^{-1} C$ is normal and its eigenvalues are

$$
\lambda_{k}(A)=\frac{\lambda_{k}(C)}{\lambda_{k}(B)}=\frac{(1-\mu)+\mu \cos \pi k h}{(1+\mu)-\mu \cos \pi k h}=\frac{1-2 \mu \sin ^{2} \frac{1}{2} \pi k h}{1+2 \mu \sin ^{2} \frac{1}{2} \pi k h} \Rightarrow\left|\lambda_{k}(A)\right| \leq 1, \quad k=1 \ldots M
$$

Consequently Crank-Nicolson is stable for all $\mu>0$. [Note: Similarly to the situation with stiff ODEs, this does not mean that $k=\Delta t$ may be arbitrarily large, but that the only valid consideration in the choice of $k=\Delta t$ vs $h=\Delta x$ is accuracy.]

Matlab demo: Download the Matlab GUI for Stability of 1D PDEs from http://www. maths. cam.ac.uk/undergrad/course/na/ii/pde_stability/pde_stability.php and solve the diffusion equation in the interval $[0,1]$ with the Euler method and with Crank-Nicolson. See the effect of unconditional stability!

Example 2.15 (Convergence of the Crank-Nicolson method for diffusion equation) It is not difficult to verify that the local error of the Crank-Nicolson scheme is $\eta_{m}^{n}=\mathcal{O}\left(k^{3}+k h^{2}\right)$, where $\mathcal{O}\left(k^{3}\right)$ is inherited from the trapezoidal rule (compared to $\mathcal{O}\left(k^{2}\right)$ for the Euler method). Hence, for the error vectors e^{n} we have

$$
B \boldsymbol{e}^{n+1}=C \boldsymbol{e}^{n}+\boldsymbol{\eta}^{n} \Rightarrow\left\|\boldsymbol{e}^{n+1}\right\| \leq\left\|B^{-1} C\right\| \cdot\left\|\boldsymbol{e}^{n}\right\|+\left\|B^{-1}\right\| \cdot\left\|\boldsymbol{\eta}^{n}\right\|
$$

We have just proved that $\left\|B^{-1} C\right\| \leq 1$, and we also have $\left\|B^{-1}\right\| \leq 1$, because all the eigenvalues of B are greater than 1 . Therefore, $\left\|\boldsymbol{e}^{n+1}\right\| \leq\left\|\boldsymbol{e}^{n}\right\|+\left\|\boldsymbol{\eta}^{n}\right\|$, and

$$
\left\|\boldsymbol{e}^{n}\right\| \leq\left\|\boldsymbol{e}^{0}\right\|+n\|\boldsymbol{\eta}\|=n\|\boldsymbol{\eta}\| \leq \frac{c T}{k}\left(k^{3}+k h^{2}\right)=c T\left(k^{2}+h^{2}\right) .
$$

Thus, taking $k=\alpha h$ will result in $\mathcal{O}\left(h^{2}\right)$ error of approximation which is independent of the Courant number $\mu=k / h^{2}$.

Example 2.16 (Crank-Nicolson for advection equation) Let

$$
u_{m}^{n+1}-u_{m}^{n}=\frac{1}{4} \mu\left(u_{m+1}^{n+1}-u_{m-1}^{n+1}\right)+\frac{1}{4} \mu\left(u_{m+1}^{n}-u_{m-1}^{n}\right), \quad m=1 \ldots M
$$

(This is the trapezoidal rule applied to the semidiscretization of advection equation $\frac{\partial u}{\partial t}=\frac{\partial u}{\partial x}$). In this case, $\boldsymbol{u}^{n+1}=B^{-1} C \boldsymbol{u}^{n}$, where the matrices B and C are Toeplitz antisymmetric tridiagonal,

$$
B=\left[\begin{array}{cccc}
1 & -\frac{1}{4} \mu & & \\
\frac{1}{4} \mu & 1 & \ddots & \\
& \ddots & \ddots & -\frac{1}{4} \mu \\
& & \frac{1}{4} \mu & 1
\end{array}\right], \quad C=\left[\begin{array}{cccc}
1 & \frac{1}{4} \mu & & \\
-\frac{1}{4} \mu & 1 & \ddots & \\
& \ddots & \ddots & \frac{1}{4} \mu \\
& & & -\frac{1}{4} \mu
\end{array}\right]
$$

Similarly to Exercise 4, the eigenvalues and eigenvectors of the matrix

$$
S=\left[\begin{array}{cccc}
\alpha & \beta & & \\
-\beta & \alpha & \ddots & \\
& \ddots & \ddots & \beta \\
& & -\beta & \alpha
\end{array}\right]
$$

are given by $\lambda_{k}=\alpha+2 \mathrm{i} \beta \cos k x$, and $\boldsymbol{w}_{k}=\left(\mathrm{i}^{m} \sin k m x\right)_{m=1}^{M}$, where $x=\pi h=\frac{\pi}{M+1}$. So, all such S are normal and share the same eigenvector, hence so does $A=B^{-1} C$, hence A is normal and

$$
\lambda_{k}(A)=\frac{\lambda_{k}(C)}{\lambda_{k}(B)}=\frac{1+\frac{1}{2} \mathrm{i} \mu \cos k x}{1-\frac{1}{2} \mathrm{i} \mu \cos k x} \quad \Rightarrow \quad\left|\lambda_{k}(A)\right|=1, \quad k=1 \ldots M .
$$

So, Crank-Nicolson is again stable for all $\mu>0$.
Example 2.17 (Euler for advection equation) Finally, consider the Euler method for advection equation

$$
u_{m}^{n+1}-u_{m}^{n}=\mu\left(u_{m+1}^{n}-u_{m}^{n}\right), \quad m=1 \ldots M
$$

We have $\boldsymbol{u}^{n+1}=A \boldsymbol{u}^{n}$, where

$$
A=\left[\begin{array}{cccc}
1-\mu & \mu & & \\
& 1-\mu & \ddots & \\
& & \ddots & \mu \\
& & & 1-\mu
\end{array}\right]
$$

but A is not normal, and although its eigenvalues are bounded by 1 for $\mu \leq 2$, it is the spectral radius of $A A^{T}$ that matters, and we have $\rho\left(A A^{T}\right) \approx(|1-\mu|+|\mu|)^{2}$, so that the method is stable only if $\mu \leq 1$.

