
Dr J Lellmann

Mathematical Tripos Part II: Michaelmas Term 2014

Numerical Analysis – Lecture 6

Definition 2.11 (Normal matrices) We say that a matrix A is normal if A = QDQ̄T , where D is
a (complex) diagonal matrix and Q is a unitary matrix (such that QQ̄T = I). In other words, a
matrix is normal if it has a complete set of orthonormal eigenvectors.

Examples of the real normal matrices, besides the familiar symmetric matrices (A = AT ),
inlclude also the matrices which are skew-symmetric (A = −AT ), or more generally the matrices
with skew-symmetric off-diagonal part.

Proposition 2.12 If A is normal, then ‖A‖ = ρ(A).

Proof. For any complex matrix B, we have ‖B‖ = sup ‖Bx‖
‖x‖ , and if w be an eigenvector of B, then

‖Bw‖ = |λ|‖w‖. So, we deduce that

ρ(B) ≤ ‖B‖ ∀B ∈ Cn×n (and for every vector norm ‖ ∙ ‖) .

Next, let A be normal and recall that unitary matrices are isometries with respect to the Euclidean
norm, i.e., ‖Qv‖ = ‖v‖ for any v. Therefore (for the Euclidean norm)

‖Av‖ = ‖QDQ̄T v‖ = ‖DQ̄T v‖ = ‖Du‖ ,

where u = Q̄T v, hence ‖u‖ = ‖v‖. Finally D is diagonal and similar to A, therefore diag D = σ(A)
and ‖D‖ = ρ(A), hence

‖Av‖ = ‖Du‖ ≤ ‖D‖ ‖u‖ = ρ(A)‖v‖ .

Thus ‖A‖ ≤ ρ(A), hence ‖A‖ = ρ(A). �

Remark 2.13 More generally, one can prove that ‖A‖ = [ρ(AĀT )]1/2, and the previous result can
be deduced from that formula.

Example 2.14 (Crank–Nicolson method for diffusion equation) Let
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Then un+1 = B−1Cun, where the matrices B and C are Toeplitz symmetric tridiagonal (TST),
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All M ×M TST matrices share the same eigenvectors, hence so does B−1C. Moreover, these
eigenvectors are orthogonal. Therefore, also A = B−1C is normal and its eigenvalues are

λk(A) =
λk(C)
λk(B)

=
(1 − μ) + μ cos πkh

(1 + μ) − μ cos πkh
=

1 − 2μ sin2 1
2πkh

1 + 2μ sin2 1
2πkh

⇒ |λk(A)| ≤ 1, k = 1...M.

Consequently Crank–Nicolson is stable for all μ > 0. [Note: Similarly to the situation with stiff
ODEs, this does not mean that k = Δt may be arbitrarily large, but that the only valid considera-
tion in the choice of k = Δt vs h = Δx is accuracy.]

Matlab demo: Download the Matlab GUI for Stability of 1D PDEs from http://www.maths.
cam.ac.uk/undergrad/course/na/ii/pde_stability/pde_stability.php and solve
the diffusion equation in the interval [0, 1] with the Euler method and with Crank–Nicolson. See
the effect of unconditional stability!
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Example 2.15 (Convergence of the Crank-Nicolson method for diffusion equation) It is not dif-
ficult to verify that the local error of the Crank-Nicolson scheme is ηn

m = O(k3+kh2), where O(k3)
is inherited from the trapezoidal rule (compared to O(k2) for the Euler method). Hence, for the
error vectors en we have

Ben+1 = Cen + ηn ⇒ ‖en+1‖ ≤ ‖B−1C‖ ∙ ‖en‖ + ‖B−1‖ ∙ ‖ηn‖

We have just proved that ‖B−1C‖ ≤ 1, and we also have ‖B−1‖ ≤ 1, because all the eigenvalues
of B are greater than 1. Therefore, ‖en+1‖ ≤ ‖en‖ + ‖ηn‖, and

‖en‖ ≤ ‖e0‖ + n‖η‖ = n‖η‖ ≤ cT
k

(k3 + kh2) = cT (k2 + h2).

Thus, taking k = αh will result in O(h2) error of approximation which is independent of the
Courant number μ = k/h2.

Example 2.16 (Crank–Nicolson for advection equation) Let
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(This is the trapezoidal rule applied to the semidiscretization of advection equation ∂u
∂t = ∂u

∂x ). In
this case, un+1 = B−1Cun, where the matrices B and C are Toeplitz antisymmetric tridiagonal,
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Similarly to Exercise 4, the eigenvalues and eigenvectors of the matrix
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are given by λk = α + 2 i β cos kx, and wk = (im sin kmx)M
m=1, where x = πh = π

M+1
. So, all such

S are normal and share the same eigenvector, hence so does A = B−1C, hence A is normal and

λk(A) =
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λk(B)

=
1 + 1
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⇒ |λk(A)| = 1, k = 1...M.

So, Crank–Nicolson is again stable for all μ > 0.

Example 2.17 (Euler for advection equation) Finally, consider the Euler method for advection
equation
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We have un+1 = Aun, where
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but A is not normal, and although its eigenvalues are bounded by 1 for μ ≤ 2, it is the spectral
radius of AAT that matters, and we have ρ(AAT ) ≈ (|1 − μ| + |μ|)2, so that the method is stable
only if μ ≤ 1.
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