Dr ] Lellmann

Mathematical Tripos Part II: Michaelmas Term 2014

Numerical Analysis — Lecture 8
Problem 2.23 (The advection equation) A useful paradigm for hyperbolic PDEs is the advection equation
Up = Uy, 0<x<1, t>0, (2.10)

where v = u(z,t). It is given with the initial condition u(z,0) = ¢(z), z € [0, 1] and (for simplicity) the
boundary condition u(1,¢) = ¢(¢ + 1). The exact solution of (2.10) is simply u(z,t) = ¢(z + t), a unilateral
shift leftwards. This, however, does not mean that its numerical modelling is easy.
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Example 2.24 (Instability) We commence by semidiscretizing —5-= ~ 5 [tm+1(t) — um—1(t)], so coming

to the ODE u/,,(t) = 2_1h [m+1(t) — um—1(t)]. For the Euler method, the outcome is

+1 _ 1 —
Up" = Uy, + 51 (Upyiq — Upy1), m=0..M, ne€Z,

with uf = 0 for all n. In matrix form this reads
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The matrix A is normal, with the eigenvalues A\, = 1 + iy cos {h (see Example 2.16), so that || A[|? = 1 + 42,
hence instability for any .

Method 2.25 (Upwind method) If we semidiscretize 8“5; ® ~ % [thm+1(t) — um(t)], and solve the ODE
again by Euler’s method, then the result is
uptt =g, + plup, oy — ), m=0..M, neZ, (2.11)

The local error is O(k?+kh) which is O(h?) for a fixed y, hence convergence if the method is stable.

The eigenvalue analysis of stability does not apply here, since the matrix A in "' = Au" is no longer
normal (see Example 2.17), so we do it directly (as in Lecture 5). We let the boundary condition at = 1 be
zero and define ||u”|| = max,, |u}},|. It follows at once from (2.11) that

I = max |up | < max{[1 — gl jug | + pug g [} < (10— pl + wllu”ll,  neZy
Therefore, u € (0, 1] means that [|[u™ ™| < ||[u”]| < --- < [|u?]|, hence stability.

Matlab demo: Download the Matlab GUI for Solving the Advection Equation, Upwinding and Stability from
http://www.maths.cam.ac.uk/undergrad/course/na/ii/advection/advection.php and solve
the advection equation (2.10) with the different methods provided in the demonstration. Experience what
can go wrong when “winding” in the wrong direction!
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~ 57 [Um+1(t) — um—1(t)], but now

Method 2.26 (The leapfrog method) We semidicretize (2.10) as —5-= ~ 3;

solve the ODE with the second-order midpoint rule

Ynt1 = Yn—1 + 2kf(tmyn)7 nec Z+ .
The outcome is the two-step leapfrog method
Un™ = (g, g — U)o (2.12)

The error is now O(k3+kh?) = O(h3). We analyse stability by the Fourier technique, assuming that we are
solving a Cauchy problem. Thus, proceeding as before,

@ 0) = p (¢ — e 0) @ (0) + " (0) 213)

15



whence
"t (0) — 2ip sin@a"(9) —a""(9) =0, neZ,,

and our goal is to determine values of i such that |©"(¢)| is uniformly bounded for all n,6. This is a
difference equation w11 + bw, + cw,—1 = 0 with the general solution w,, = c1 AT + c2 Ay, where A, A are
the roots of the characteristic equation A2 4+ bX 4+ ¢ = 0, and ¢, cp are constants, dependent on the initial
values wy and wy. If Ay = Ag, then solution is w,, = (¢; + can)A\™. In our case, we obtain

Ai2(6) =ipusind + /1 — u2sin®6.

Stability is equivalent to |\ 2(6)| < 1 for all # and this is true if and only if ¢ < 1.

Problem 2.27 (Stability in the presence of boundaries) It is easy to extend Fourier analysis for the Euler
method u™ = u?, + p(ul, ,; — ulk), with the initial condition u(z, 0) = ¢(z), = € [0, 1), and zero boundary
condition along # = 1. Consider the Cauchy problem for the advection equation with the initial condition
u(z,0) = ¢(z) for z € [0,1), and u(z,0) = 0 otherwise (it isn’t differentiable, but this is not much of a
problem). Solving the Cauchy problem with Euler, we recover u" that is identical to the solution obtained
from the zero boundary condition. This justifies using Fourier analysis for the problem with a boundary,
and we obtain

a"tNe) = HO)a"(0),  HO) = (1 — p) + pe',

so that max |H ()| = |1 — p| + |p|, hence stability if and only if ;4 < 1.

Unfortunately, this is no longer true for leapfrog. Closer examination reveals that we cannot use leapfrog
at m = 0, since u”; is unknown. The naive remedy, setting u™; = 0, leads to instability, which propagates
from the boundary inwards. We can recover stability letting, for example, u{™' = u} (the proof is very

difficult).

Matlab demo: The Matlab GUI for Stability of 1D PDEs features different choices of boundary condi-
tions. A brief description of those is given at the bottom of the page http://www.maths.cam.ac.uk/
undergrad/course/na/ii/pde_stability/pde_stability.php . Go and see how the solution to
the diffusion- or wave equation changes when changing the boundary conditions. Do you face any stability
problems in those cases?

Problem 2.28 (The wave equation) Consider the wave equation
?u  0%u
— =T 0,1 t>0
oz~ oz "€ =5
given with initial (for © and u;) and boundary conditions. The usual approximation looks as follows

n+1 n n—1 __ n n n
Uy, - 2um + Uy, - ,U,(’U,m+1 - 2um + 7'l‘m—l) )

with the Courant number being now p = k?/h?.

To advance in time we have to pick up the numbers u}, = u(z,, k) (of course they should depend on the
initial derivative u;(x, 0). Euler’s method provides the obvious choice w(zy,, k) = w(Zm, 0) + kui(zm,0), but
the following technique enjoys better accuracy. Specifically, we set u}, to the right-hand side of the formula

wW(Tm, k) ~ u(@m,0)+ kug(zm,,0) + %k‘2utt(a:m, 0)
= W, 0) + kue(2m, 0) + 3k Uze (2, 0)

1
u?n + 5#(“%—1 - 2“9)@ + u?n-l-l) + kg (2m, 0) -

%

The Fourier analysis (for Cauchy problem) provides
anti(9) — 2um™(0) + u"L(0) = —4psin® Sun(0),
with the characteristic equation A2 — 2(1 — 2usin® )\ + 1 = 0. The product of the roots is one, therefore
stability (that requires the moduli of both A to be at most one) is equivalent to the roots being complex
conjugate, so we require
(1—2pusin® §)2 < 1.

This condition is achieved if and only if u = k?/h? < 1.
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