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Numerical Analysis – Lecture 9
Problem 2.29 (The diffusion equation in two space dimensions) We are solving

∂u

∂t
= ∇2u, 0 ≤ x, y ≤ 1, t ≥ 0, (2.14)

where u = u(x, y, t), together with initial conditions at t = 0 and Dirichlet boundary conditions
at ∂Ω, where Ω = [0, 1]2 × [0,∞). It is straightforward to generalize our derivation of numerical
algorithms, e.g. by the method of lines. Thus, let u`,m(t) ≈ u(`h,mh, t), where h = Δx = Δy, and
let un

`,m ≈ u`,m(nk) where k = Δt. The five-point formula results in

u′
`,m = 1

h2 (u`−1,m + u`+1,m + u`,m−1 + u`,m+1 − 4u`,m),

or in the matrix form
u′ = 1

h2 A∗u, u = (u`,m) ∈ RN , (2.15)

where A∗ is the block TST matrix of the five-point scheme:
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Thus, the Euler method yields

un+1
`,m = un

`,m + μ(un
`−1,m + un

`+1,m + un
`,m−1 + un

`,m+1 − 4un
`,m), (2.16)

or in the matrix form
un+1 = Aun, A = I + μA∗

where, as before, μ = k
h2 = Δt

(Δx)2
. The local error is η = O(k2+kh2) = O(h4). To analyse stability,

we notice that A is symmetric, hence normal, and its eigenvalues are related to those of A∗ by the
rule

λk,`(A) = 1 + μλk,`(A∗) =︸︷︷︸
Proposition 1.12

1 − 4μ
(
sin2 πkh

2
+ sin2 π`h

2

)
.

Consequently,

sup
h>0

ρ(A) = max{1, |1 − 8μ|}, hence μ ≤ 1
4 ⇔ stability.

Method 2.30 (Fourier analysis) Fourier analysis generalizes to two dimensions: of course, we
now need to extend the range of (x, y) in (2.14) from 0 ≤ x, y ≤ 1 to x, y ∈ R. A 2D Fourier
transform reads

û(θ, ψ) =
∑

`,m∈Z

u`,me−i(`θ+mψ)

and all our results readily generalize. In particular, the Fourier transform is an isometry from
`2[Z2] to L2([−π, π]2), i.e.

( ∑

`,m∈Z

|u`,m|2
)1/2

=: ‖u‖ = ‖û‖∗ :=
( 1

4π2

∫ π

−π

∫ π

−π

|û(θ, ψ)|2 dθ dψ
)1/2

,

and the method is stable iff |H(θ, ψ)| ≤ 1 for all θ, ψ ∈ [−π, π]. The proofs are an easy elaboration
on the one-dimensional theory. Insofar as the Euler method (2.16) is concerned,

H(θ, ψ) = 1 + μ
(
e−iθ + eiθ + e−iψ + eiψ − 4

)
= 1 − 4μ

(
sin2 θ

2
+ sin2 ψ

2

)
,

and we again deduce stability if and only if μ ≤ 1
4 .
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Method 2.31 (Crank-Nicolson for 2D) Applying the trapezoidal rule to our semi-dicretization
(2.15) we obtain the two-dimensional Crank-Nicolson method:

(I − 1
2
μA∗) un+1 = (I + 1

2
μA∗) un , (2.17)

in which we move from the n-th to the (n+1)-st level by solving the system of linear equations
Bun+1 = Cun, or un+1 = B−1Cun. For stability, similarly to the one-dimensional case, the
eigenvalue analysis implies that A = B−1C is normal and shares the same eigenvectors with B
and C, hence

λ(A) =
λ(C)
λ(B)

=
1 + 1

2μλ(A∗)

1 − 1
2μλ(A∗)

⇒ |λ(A)| < 1 as λ(A∗) < 0

and the method is stable for all μ. The same result can be obtained through the Fourier analysis.

Matlab demo: Download the Matlab GUI for Solving the Wave and Diffusion Equations in 2D from
http://www.maths.cam.ac.uk/undergrad/course/na/ii/pdes_2d/pdes_2d.php and
solve the diffusion equation (2.14) for different initial conditions. For the numerical solution of
the equation you can choose from the Euler method and the Crank-Nicolson scheme. The GUI
allows you to solve the wave equation as well. Compare the behaviour of solutions!

Technique 2.32 (Splitting) We would like to find a fast solver to the system (2.17). The matrix
B = I − 1

2
μA∗ has a structure similar to that of A∗, so we may apply the Hockney method.

However, since the method (2.17) has a local truncation error O(k3 +kh2), we don’t need an exact
solution of the system: it would be enough to have one within the error.

Let us employ the notation

Δ2
xu`,m = u`−1,m − 2u`,m + u`+1,m, Δ2

yu`,m = u`,m−1 − 2u`,m + u`,m+1 .

Then the Crank-Nicolson method calculates un+1 by solving the system
[
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]
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]
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`,m , `,m = 1...M. (2.18)

The local error is however preserved if we replace this formula by the difference equation
[
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]
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`,m , (2.19)

which is called the split version of Crank-Nicolson. Indeed, the difference between two schemes
is equal to

1
4
μ2Δ2

xΔ2
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)
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the same magnitude as of the local error. In the matrix form, (2.19) is equivalent to splitting the
matrix A∗ into the sum of two matrices Ax and Ay as

A∗ = Ax + Ay, Ax =
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and solving the uncoupled system
[
I − 1

2
μAx

][
I − 1

2
μAy

]
un+1 =

[
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2
μAx

][
I + 1

2
μAy

]
un .

as
Bxun+1/2 = CxCyun, Byun+1 = un+1/2.

Matrix By = I − 1
2μAy is block diagonal, and solving Byu = v is just solving one and the same

tridiagonal system Bui = vi with different right-hand sides. Matrix Bx = I− 1
2μAx is of the same

form up to a permutation (reodering of the grid), so solving Bxv = b is again a fast procedure.
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