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Mathematical Tripos Part II: Michaelmas Term 2014

Numerical Analysis — Lecture 10
Example 2.33 Consider the general diffusion equation
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where a(z,y) > 0 and f(z,y) are given, together with initial conditions on [0, 1]*> and Dirichlet
boundary conditions along 9[0, 1]? x [0, 00). Replace each space derivative by central differences at
midpoints,
dg(¢) _ 9(6+ 3h) — g(€ = 3h)
de h ’

resulting in the ODE system

’ _ 1
ul,m = n2 |:a€—%,mu[—1,m + a’f-‘r%,'rnu@'i‘lym + a@,'rn—%u&m—l + a’é,’m-ﬁ-%uzam"rl (2 21)

- (aé—%,m + aé-‘r%,m —+ a’f,m—% —+ a’f,m+%)u€7mi| + f&m-

The system (2.21) can be solved by an implicit ODE method, e.g. Crank-Nicolson, except that this
requires a costly solution of a large algebraic system in each time step.

Intermezzo 2.34 (Linear systems of ODEs) The system (2.21) is linear and (assuming for the time
being zero boundary conditions and f = 0) homogeneous. With greater generality, let us consider
the ODE system

y = Ay, y(0) = yo. (2.22)

We define formally a matrix exponential by Taylor series, e = 77 %B’“, and easily verify by
formal differentiation that de*4 /dt = Ae*4, therefore y(t) = e'y,.

In fact, one observes that one-step methods for ODEs, in a linear case, are approximating a
matrix exponential. Thus, with k = At,

Euler: y,, = (I + kA)"y,, 1+2z=¢e*+0(2?);
—1 n 1+lz . -
TR: Y, = [(I — kA I+ %kA)] Yo, 1_;2 =e* + 0(2%).

Technique 2.35 (Splitting methods) Going back to (2.21), we split A = A, + A,, so that A, and
A, are constructed from the contribution of discretizations in the x and y directions respectively
(similarly to Technique 2.32). In other words, A, includes all the a,, 1 ,,, terms and A, consists of
the remaining a, ,,,.. 1 components. Note that, if the grid is ordered by columns, A, is tridiagonal,
and if the grid is ordered by rows, A, is tridiagonal. Recall that, for z1, 2o € C, we have e*1 %2 =
e*te* and suppose for a moment that this property extends to matrices, i.e. that e'4 = e*(B+C) =
eBetC. Had this been true, we could have approximated each component with the trapezoidal
rule, say, to produce

Wt = (1= 2pA) T (1 4+ SpAn) (1 SpA) T (I + 2uA ), = k/n2 (2.23)

The advantage of (2.23) lies in the fact that (up to a known permutation) both I — % uA, and

I— %ﬂAy are tridiagonal, hence can be solved very cheaply.
Unfortunately, the assumption that e/(B+C) = ¢!BetC is, in general, false. [Note: It is true,
however, for a(x,y) = const, for in this case A, and A, commute, cf. Technique 2.32.] Not all
hope is lost, though, and we will demonstrate that, suitably implemented, splitting is a powerful

technique to reduce drastically the expense of numerical solution.
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Method 2.36 (Splitting) Comparing the Taylor expansions of e!(B+¢) with e!5e! we obtain
e!Pe!C = !BFC) 1 L12(BC — OB) + O(#). (2.24)

tBelC = ot (B+C) for all t > 0 if and only if B and C' commute. The good news

AHBHC) with eAtBeAtC incurs an error of O((At)?). So, if 7 is a

In particular, e
is, however, that approximating e
rational function such that 7(z2) = e* + O(z?), then

u" = r(pAy)r(pAy)u” (2.25)

produces an error of O((At)?). The choice r(z) = (14 3z)/(1— 12) results in a split Crank-Nicolson
scheme, whose implementation reduces to a solution of tridiagonal algebraic linear systems.
It is easy to prove that

et (B+C) _ % (etBetC + etCetB) + O(tg), et(B+C) _ e%tBetCe%tB + O(ts),

the second formula is called the Strang splitting. Thus, as long as r(z) = e* + O(z?), the time-
stepping formula u" ! = r(%,qu) r(pAy) r(%qu) u™ carries a local error of O((At)3).

As far as stability is concerned, we observe that both A, and A, are symmetric, hence nor-
mal, therefore so are r(pA,) and r(puAy). Then Euclidean (L;)-norm equals the spectral radius,
therefore for the splitting (2.25), we have

Hun+1|| < |r(pAL)] - HT(MAy)H Jum|| = plr(pdy)] 'P[T(NAy)} "

It is easy to verify by Gershgorin theorem that the eigenvalues of the matrices A, and A, are non-
positive, hence provided that r fulfils |r(z)| < 1forz € C,Re z < 0, itis true that p[r(uA,)], p[r(pad,)] <
1. This proves [[u" || < [lu™| < --- < |[u||, hence stability.

Method 2.37 (Splitting of inhomogeneous systems) Recall our goal, namely fast methods for
the two-dimensional diffusion equation. Our exposition so far has been contrived, because of
the assumption that the boundary conditions are zero. In general, the linear ODE system is of the

form
u = Au+b, u(0) = u?, (2.26)

where b originates in boundary conditions (and in a forcing term f(z,y) in the original PDE
(2.20)). Note that our analysis should accommodate b = b(t), since boundary conditions might
vary in time! The exact solution of (2.26) is provided by the variation of constants formula

t
u(t) = etu(0) +/ et=9)4p(s)ds,  t >0,
0

therefore .
n+1
ultar) = e ulty) + [ e b(s)ds,
t

The integral can be frequently evaluated explicitly, e.g. when b is a linear combination of polyno-
mial and exponential terms. For example, b(t) = b = const yields

Utnyr) = e Au(t,) + A7 (e 1) b.

This, unfortunately, is not a helpful observation, since, even if we split the exponential e!4 how
are we supposed to split A™! = (B + C)~!? The remedy is not to evaluate the integral explicitly

but, instead, to use quadrature. For example, the trapezoidal rule fok g(r)dr = %k[g(O) +g(k)] +
O(k3) gives
U(tni1) ~ eAu(ty) + SALHAMb(t,) + b(tai1))],

with a local error of O((At)?). We can now replace exponentials with their splittings. For example,
Strang’s splitting results in

u™tl = r(JAB) r(AtO) r(SALB) [ut + LA"] + TA™H

As before, everything reduces to (inexpensive) solution of tridiagonal systems!
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