Mathematical Tripos Part II: Michaelmas Term 2014
 Numerical Analysis - Lecture 10

Example 2.33 Consider the general diffusion equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\nabla^{\top}(a(x, y) \nabla u)+f(x, y)=\frac{\partial}{\partial x}\left(a(x, y) \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(a(x, y) \frac{\partial u}{\partial y}\right)+f(x, y) \tag{2.20}
\end{equation*}
$$

where $a(x, y)>0$ and $f(x, y)$ are given, together with initial conditions on $[0,1]^{2}$ and Dirichlet boundary conditions along $\partial[0,1]^{2} \times[0, \infty)$. Replace each space derivative by central differences at midpoints,

$$
\frac{\mathrm{d} g(\xi)}{\mathrm{d} \xi} \approx \frac{g\left(\xi+\frac{1}{2} h\right)-g\left(\xi-\frac{1}{2} h\right)}{h}
$$

resulting in the ODE system

$$
\begin{gather*}
u_{\ell, m}^{\prime}=\frac{1}{h^{2}}\left[a_{\ell-\frac{1}{2}, m} u_{\ell-1, m}+a_{\ell+\frac{1}{2}, m} u_{\ell+1, m}+a_{\ell, m-\frac{1}{2}} u_{\ell, m-1}+a_{\ell, m+\frac{1}{2}} u_{\ell, m+1}\right. \tag{2.21}\\
\left.-\left(a_{\ell-\frac{1}{2}, m}+a_{\ell+\frac{1}{2}, m}+a_{\ell, m-\frac{1}{2}}+a_{\ell, m+\frac{1}{2}}\right) u_{\ell, m}\right]+f_{\ell, m} .
\end{gather*}
$$

The system (2.21) can be solved by an implicit ODE method, e.g. Crank-Nicolson, except that this requires a costly solution of a large algebraic system in each time step.

Intermezzo 2.34 (Linear systems of ODEs) The system (2.21) is linear and (assuming for the time being zero boundary conditions and $f \equiv 0$) homogeneous. With greater generality, let us consider the ODE system

$$
\begin{equation*}
\boldsymbol{y}^{\prime}=A \boldsymbol{y}, \quad \boldsymbol{y}(0)=\boldsymbol{y}_{0} \tag{2.22}
\end{equation*}
$$

We define formally a matrix exponential by Taylor series, $\mathrm{e}^{B}=\sum_{k=0}^{\infty} \frac{1}{k!} B^{k}$, and easily verify by formal differentiation that $\mathrm{de}^{t A} / \mathrm{d} t=A \mathrm{e}^{t A}$, therefore $\boldsymbol{y}(t)=\mathrm{e}^{t A} \boldsymbol{y}_{0}$.

In fact, one observes that one-step methods for ODEs, in a linear case, are approximating a matrix exponential. Thus, with $k=\Delta t$,

$$
\begin{array}{lll}
\text { Euler: } & \boldsymbol{y}_{n}=(I+k A)^{n} \boldsymbol{y}_{0}, & 1+z=\mathrm{e}^{z}+\mathcal{O}\left(z^{2}\right) \\
\text { TR: } & \boldsymbol{y}_{n}=\left[\left(I-\frac{1}{2} k A\right)^{-1}\left(I+\frac{1}{2} k A\right)\right]^{n} \boldsymbol{y}_{0}, & \frac{1+\frac{1}{2} z}{1-\frac{1}{2} z}=\mathrm{e}^{z}+\mathcal{O}\left(z^{3}\right) .
\end{array}
$$

Technique 2.35 (Splitting methods) Going back to (2.21), we split $A=A_{x}+A_{y}$, so that A_{x} and A_{y} are constructed from the contribution of discretizations in the x and y directions respectively (similarly to Technique 2.32). In other words, A_{x} includes all the $a_{\ell \pm \frac{1}{2}, m}$ terms and A_{y} consists of the remaining $a_{\ell, m \pm \frac{1}{2}}$ components. Note that, if the grid is ordered by columns, A_{y} is tridiagonal, and if the grid is ordered by rows, A_{x} is tridiagonal. Recall that, for $z_{1}, z_{2} \in \mathbb{C}$, we have $\mathrm{e}^{z_{1}+z_{2}}=$ $\mathrm{e}^{z_{1}} \mathrm{e}^{z_{2}}$ and suppose for a moment that this property extend to matrices, i.e. that $\mathrm{e}^{t A}=\mathrm{e}^{t(B+C)}=$ $\mathrm{e}^{t B} \mathrm{e}^{t C}$. Had this been true, we could have approximated each component with the trapezoidal rule, say, to produce

$$
\begin{equation*}
\boldsymbol{u}^{n+1}=\left(I-\frac{1}{2} \mu A_{x}\right)^{-1}\left(I+\frac{1}{2} \mu A_{x}\right)\left(I-\frac{1}{2} \mu A_{y}\right)^{-1}\left(I+\frac{1}{2} \mu A_{y}\right) \boldsymbol{u}^{n}, \quad \mu=k / h^{2} . \tag{2.23}
\end{equation*}
$$

The advantage of (2.23) lies in the fact that (up to a known permutation) both $I-\frac{1}{2} \mu A_{x}$ and $I-\frac{1}{2} \mu A_{y}$ are tridiagonal, hence can be solved very cheaply.

Unfortunately, the assumption that $\mathrm{e}^{t(B+C)}=\mathrm{e}^{t B} \mathrm{e}^{t C}$ is, in general, false. [Note: It is true, however, for $a(x, y) \equiv$ const, for in this case A_{x} and A_{y} commute, cf. Technique 2.32.] Not all hope is lost, though, and we will demonstrate that, suitably implemented, splitting is a powerful technique to reduce drastically the expense of numerical solution.

Method 2.36 (Splitting) Comparing the Taylor expansions of $\mathrm{e}^{t(B+C)}$ with $\mathrm{e}^{t B} \mathrm{e}^{t C}$ we obtain

$$
\begin{equation*}
\mathrm{e}^{t B} \mathrm{e}^{t C}=\mathrm{e}^{t(B+C)}+\frac{1}{2} t^{2}(B C-C B)+\mathcal{O}\left(t^{3}\right) \tag{2.24}
\end{equation*}
$$

In particular, $\mathrm{e}^{t B} \mathrm{e}^{t C}=\mathrm{e}^{t(B+C)}$ for all $t \geq 0$ if and only if B and C commute. The good news is, however, that approximating $\mathrm{e}^{\Delta t(B+C)}$ with $\mathrm{e}^{\Delta t B} \mathrm{e}^{\Delta t C}$ incurs an error of $\mathcal{O}\left((\Delta t)^{2}\right)$. So, if r is a rational function such that $r(z)=\mathrm{e}^{z}+\mathcal{O}\left(z^{2}\right)$, then

$$
\begin{equation*}
\boldsymbol{u}^{n+1}=r\left(\mu A_{x}\right) r\left(\mu A_{y}\right) \boldsymbol{u}^{n} \tag{2.25}
\end{equation*}
$$

produces an error of $\mathcal{O}\left((\Delta t)^{2}\right)$. The choice $r(z)=\left(1+\frac{1}{2} z\right) /\left(1-\frac{1}{2} z\right)$ results in a split Crank-Nicolson scheme, whose implementation reduces to a solution of tridiagonal algebraic linear systems.

It is easy to prove that

$$
\mathrm{e}^{t(B+C)}=\frac{1}{2}\left(\mathrm{e}^{t B} \mathrm{e}^{t C}+\mathrm{e}^{t C} \mathrm{e}^{t B}\right)+\mathcal{O}\left(t^{3}\right), \quad \mathrm{e}^{t(B+C)}=\mathrm{e}^{\frac{1}{2} t B} \mathrm{e}^{t C} \mathrm{e}^{\frac{1}{2} t B}+\mathcal{O}\left(t^{3}\right)
$$

the second formula is called the Strang splitting. Thus, as long as $r(z)=\mathrm{e}^{z}+\mathcal{O}\left(z^{3}\right)$, the timestepping formula $\boldsymbol{u}^{n+1}=r\left(\frac{1}{2} \mu A_{x}\right) r\left(\mu A_{y}\right) r\left(\frac{1}{2} \mu A_{x}\right) \boldsymbol{u}^{n}$ carries a local error of $\mathcal{O}\left((\Delta t)^{3}\right)$.

As far as stability is concerned, we observe that both A_{x} and A_{y} are symmetric, hence normal, therefore so are $r\left(\mu A_{x}\right)$ and $r\left(\mu A_{y}\right)$. Then Euclidean $\left(L_{2}\right)$-norm equals the spectral radius, therefore for the splitting (2.25), we have

$$
\left\|\boldsymbol{u}^{n+1}\right\| \leq\left\|r\left(\mu A_{x}\right)\right\| \cdot\left\|r\left(\mu A_{y}\right)\right\| \cdot\left\|\boldsymbol{u}^{n}\right\|=\rho\left[r\left(\mu A_{x}\right)\right] \cdot \rho\left[r\left(\mu A_{y}\right)\right] \cdot\left\|\boldsymbol{u}^{n}\right\|
$$

It is easy to verify by Gershgorin theorem that the eigenvalues of the matrices A_{x} and A_{y} are nonpositive, hence provided that r fulfils $|r(z)|<1$ for $z \in \mathbb{C}, \operatorname{Re} z<0$, it is true that $\rho\left[r\left(\mu A_{x}\right)\right], \rho\left[r\left(\mu A_{y}\right)\right] \leq$ 1. This proves $\left\|\boldsymbol{u}^{n+1}\right\| \leq\left\|\boldsymbol{u}^{n}\right\| \leq \cdots \leq\left\|\boldsymbol{u}^{0}\right\|$, hence stability.

Method 2.37 (Splitting of inhomogeneous systems) Recall our goal, namely fast methods for the two-dimensional diffusion equation. Our exposition so far has been contrived, because of the assumption that the boundary conditions are zero. In general, the linear ODE system is of the form

$$
\begin{equation*}
\boldsymbol{u}^{\prime}=A \boldsymbol{u}+\boldsymbol{b}, \quad \boldsymbol{u}(0)=\boldsymbol{u}^{0} \tag{2.26}
\end{equation*}
$$

where \boldsymbol{b} originates in boundary conditions (and in a forcing term $f(x, y)$ in the original PDE (2.20)). Note that our analysis should accommodate $\boldsymbol{b}=\boldsymbol{b}(t)$, since boundary conditions might vary in time! The exact solution of (2.26) is provided by the variation of constants formula

$$
\boldsymbol{u}(t)=\mathrm{e}^{t A} \boldsymbol{u}(0)+\int_{0}^{t} \mathrm{e}^{(t-s) A} \boldsymbol{b}(s) \mathrm{d} s, \quad t \geq 0
$$

therefore

$$
\boldsymbol{u}\left(t_{n+1}\right)=\mathrm{e}^{\Delta t A} \boldsymbol{u}\left(t_{n}\right)+\int_{t_{n}}^{t_{n+1}} \mathrm{e}^{\left(t_{n+1}-s\right) A} \boldsymbol{b}(s) \mathrm{d} s
$$

The integral can be frequently evaluated explicitly, e.g. when \boldsymbol{b} is a linear combination of polynomial and exponential terms. For example, $\boldsymbol{b}(t) \equiv \boldsymbol{b}=$ const yields

$$
\boldsymbol{u}\left(t_{n+1}\right)=\mathrm{e}^{\Delta t A} \boldsymbol{u}\left(t_{n}\right)+A^{-1}\left(\mathrm{e}^{\Delta t A}-I\right) \boldsymbol{b}
$$

This, unfortunately, is not a helpful observation, since, even if we split the exponential $\mathrm{e}^{t A}$, how are we supposed to split $A^{-1}=(B+C)^{-1}$? The remedy is not to evaluate the integral explicitly but, instead, to use quadrature. For example, the trapezoidal rule $\int_{0}^{k} g(\tau) \mathrm{d} \tau=\frac{1}{2} k[g(0)+g(k)]+$ $\mathcal{O}\left(k^{3}\right)$ gives

$$
\boldsymbol{u}\left(t_{n+1}\right) \approx \mathrm{e}^{\Delta t A} \boldsymbol{u}\left(t_{n}\right)+\frac{1}{2} \Delta t\left[\mathrm{e}^{\Delta t A} \boldsymbol{b}\left(t_{n}\right)+\boldsymbol{b}\left(t_{n+1}\right)\right]
$$

with a local error of $\mathcal{O}\left((\Delta t)^{3}\right)$. We can now replace exponentials with their splittings. For example, Strang's splitting results in

$$
\boldsymbol{u}^{n+1}=r\left(\frac{1}{2} \Delta t B\right) r(\Delta t C) r\left(\frac{1}{2} \Delta t B\right)\left[\boldsymbol{u}^{n}+\frac{1}{2} \Delta t \boldsymbol{b}^{n}\right]+\frac{1}{2} \Delta t \boldsymbol{b}^{n+1}
$$

As before, everything reduces to (inexpensive) solution of tridiagonal systems!

