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Numerical Analysis – Lecture 10

Example 2.33 Consider the general diffusion equation
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where a(x, y) > 0 and f(x, y) are given, together with initial conditions on [0, 1]2 and Dirichlet
boundary conditions along ∂[0, 1]2×[0,∞). Replace each space derivative by central differences at
midpoints,
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resulting in the ODE system
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The system (2.21) can be solved by an implicit ODE method, e.g. Crank–Nicolson, except that this
requires a costly solution of a large algebraic system in each time step.

Intermezzo 2.34 (Linear systems of ODEs) The system (2.21) is linear and (assuming for the time
being zero boundary conditions and f ≡ 0) homogeneous. With greater generality, let us consider
the ODE system

y′ = Ay, y(0) = y0. (2.22)

We define formally a matrix exponential by Taylor series, eB =
∑∞

k=0
1
k!

Bk, and easily verify by
formal differentiation that detA/dt = AetA, therefore y(t) = etAy0.

In fact, one observes that one-step methods for ODEs, in a linear case, are approximating a
matrix exponential. Thus, with k = Δt,
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Technique 2.35 (Splitting methods) Going back to (2.21), we split A = Ax + Ay , so that Ax and
Ay are constructed from the contribution of discretizations in the x and y directions respectively
(similarly to Technique 2.32). In other words, Ax includes all the a`± 1

2 ,m terms and Ay consists of
the remaining a`,m± 1

2
components. Note that, if the grid is ordered by columns, Ay is tridiagonal,

and if the grid is ordered by rows, Ax is tridiagonal. Recall that, for z1, z2 ∈ C, we have ez1+z2 =
ez1ez2 and suppose for a moment that this property extends to matrices, i.e. that etA = et(B+C) =
etBetC . Had this been true, we could have approximated each component with the trapezoidal
rule, say, to produce
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un , μ = k/h2. (2.23)

The advantage of (2.23) lies in the fact that (up to a known permutation) both I − 1
2
μAx and

I − 1
2
μAy are tridiagonal, hence can be solved very cheaply.

Unfortunately, the assumption that et(B+C) = etBetC is, in general, false. [Note: It is true,
however, for a(x, y) ≡ const, for in this case Ax and Ay commute, cf. Technique 2.32.] Not all
hope is lost, though, and we will demonstrate that, suitably implemented, splitting is a powerful
technique to reduce drastically the expense of numerical solution.
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Method 2.36 (Splitting) Comparing the Taylor expansions of et(B+C) with etBetC we obtain

etBetC = et(B+C) + 1
2
t2(BC − CB) + O(t3). (2.24)

In particular, etBetC = et(B+C) for all t ≥ 0 if and only if B and C commute. The good news
is, however, that approximating eΔt(B+C) with eΔtBeΔtC incurs an error of O((Δt)2). So, if r is a
rational function such that r(z) = ez + O(z2), then

un+1 = r(μAx)r(μAy)un (2.25)

produces an error of O((Δt)2). The choice r(z) = (1+ 1
2z)/(1− 1

2z) results in a split Crank–Nicolson
scheme, whose implementation reduces to a solution of tridiagonal algebraic linear systems.

It is easy to prove that
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the second formula is called the Strang splitting. Thus, as long as r(z) = ez + O(z3), the time-
stepping formula un+1 = r
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un carries a local error of O((Δt)3).

As far as stability is concerned, we observe that both Ax and Ay are symmetric, hence nor-
mal, therefore so are r(μAx) and r(μAy). Then Euclidean (L2)-norm equals the spectral radius,
therefore for the splitting (2.25), we have

‖un+1‖ ≤ ‖r(μAx)‖ ∙ ‖r(μAy)‖ ∙ ‖un‖ = ρ[r(μAx)] ∙ ρ[r(μAy)] ∙ ‖un‖.

It is easy to verify by Gershgorin theorem that the eigenvalues of the matrices Ax and Ay are non-
positive, hence provided that r fulfils |r(z)| < 1 for z ∈ C, Re z < 0, it is true that ρ[r(μAx)], ρ[r(μAy)] ≤
1. This proves ‖un+1‖ ≤ ‖un‖ ≤ ∙ ∙ ∙ ≤ ‖u0‖, hence stability.

Method 2.37 (Splitting of inhomogeneous systems) Recall our goal, namely fast methods for
the two-dimensional diffusion equation. Our exposition so far has been contrived, because of
the assumption that the boundary conditions are zero. In general, the linear ODE system is of the
form

u′ = Au + b, u(0) = u0, (2.26)

where b originates in boundary conditions (and in a forcing term f(x, y) in the original PDE
(2.20)). Note that our analysis should accommodate b = b(t), since boundary conditions might
vary in time! The exact solution of (2.26) is provided by the variation of constants formula

u(t) = etAu(0) +
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therefore
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The integral can be frequently evaluated explicitly, e.g. when b is a linear combination of polyno-
mial and exponential terms. For example, b(t) ≡ b = const yields

u(tn+1) = eΔtAu(tn) + A−1
(
eΔtA − I

)
b.

This, unfortunately, is not a helpful observation, since, even if we split the exponential etA, how
are we supposed to split A−1 = (B + C)−1? The remedy is not to evaluate the integral explicitly

but, instead, to use quadrature. For example, the trapezoidal rule
∫ k

0
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2
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2
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with a local error of O((Δt)3). We can now replace exponentials with their splittings. For example,
Strang’s splitting results in
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As before, everything reduces to (inexpensive) solution of tridiagonal systems!
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