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Numerical Analysis – Lecture 11

3 Spectral Methods

Discussion 3.1 (Large matrices versus small matrices) Finite difference schemes rest upon the
replacement of derivatives by a linear combination of function values. This leads to the solu-
tion of a system of algebraic equations, which on the one hand tends to be large (due to the slow
convergence properties of the approximation) but on the other hand is highly structured and
sparse, leading itself to effective algorithms for its solution. We will get to know some of these
algorithms in Section 4.

However, an enticing alternative to this strategy are methods that produce small matrices in
the first place. Although, these matrices will usually not be sparse anymore, the much smaller
the size of the matrices renders its solution affordable. The key point for such approximations are
better convergence properties requiring much smaller number of parameters.

Problem 3.2 (Fourier approximation of functions) We consider the truncated Fourier approxima-
tion of a function f on the interval [−1, 1]:

f(x) ≈ φN (x) =
N/2∑

n=−N/2+1

f̂neiπnx, x ∈ [−1, 1], (3.1)

where here and elsewhere in this section N ≥ 2 is an even integer and

f̂n =
1
2

∫ 1

−1

f(τ)e−iπnτ dτ, n ∈ Z

are the (Fourier) coefficients of this approximation. We want to analyse the approximation prop-
erties of (3.1).

Theorem 3.3 (The de la Valleé Poussin theorem) If the function f is Riemann integrable and f̂n =
O(n−1) for |n| � 1 then φN (x) = f(x) + O(N−1) as N → ∞ for every point x ∈ (−1, 1) where f is
Lipschitz.

Remark 3.4 (The Gibbs effect at the end points) Note that if f is smoothly differentiable then,
integrating by parts,

f̂n =
(−1)n+1

2πin
[f(1) − f(−1)] +

1
πin

f̂ ′
n = O(n−1) for |n| � 1.

Since such an f is Lipschitz on (−1, 1), we deduce from Theorem 3.3 that φN converges to f there
with speed O(N−1). However, convergence with speed O(N−1) is very slow and moreover, we
cannot guarantee convergence at the endpoints −1 and 1. In fact, it is possible to show that

φN (±1) −→
1
2
[f(−1) + f(1)] as n → ∞

and hence, unless f is periodic we fail to converge.

Matlab Demo: Compare the above findings with the computations discussed in the FFT
with Spectral Methods online documentation at http://www.maths.cam.ac.uk/undergrad/
course/na/ii/poisson_equation/poisson_equation.php .
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Method 3.5 (Fourier approximation for periodic functions) Suppose f is an analytic function in
[−1, 1], that can be extended analytically to a closed complex domain Ω. In addition let f be
periodic with period 2. In particular, f (m)(−1) = f (m)(1) for all m = 0, 1, . . .. Then, by multiple
integration by parts, we get

f̂n =
1

πin
f̂ ′

n =
1

(πin)2
f̂ ′′

n =
1

(πin)3
f̂ ′′′

n = . . . .

Thus, we have

f̂n =
1

(πin)m
f̂ (m)

n, m = 0, 1, . . . . (3.2)

But, how large is
∣
∣
∣f̂ (m)

n

∣
∣
∣? To answer this question we use Cauchy’s theorem of complex analysis,

which states that

f (m)(x) =
m!
2πi

∫

γ

f(z) dz

(z − x)m+1
, x ∈ [−1, 1],

where γ is the positively oriented boundary of Ω. Therefore, with α−1 > 0 be the minimal distance
between γ and [−1, 1] and κ = max{|f(z)| : z ∈ γ} < ∞, it follows that

|f (m)(x)| ≤
m!
2π

∫

γ

|f(z)| |dz|
|z − x|m+1

≤
κ length γ

2π
m!αm+1,

and hence, we can bound
∣
∣
∣f̂ (m)

n

∣
∣
∣ ≤ cm!αm+1 for some c > 0. Now, using (3.2) and the above

upper bound,

|φN (x) − f(x)| =

∣
∣
∣
∣
∣
∣

N/2∑

n=−N/2+1

f̂neiπnx −
∞∑

n=−∞

f̂neiπnx

∣
∣
∣
∣
∣
∣
≤

−N/2∑

n=−∞

|f̂n| +
+∞∑

n=N/2+1

|f̂n|

=
−N/2∑

n=−∞

|f̂ (m)
n|

(−πn)m
+

+∞∑

n=N/2+1

|f̂ (m)
n|

(πn)m
≤

cm!αm+1

πm



 1
(N/2)m

+ 2
+∞∑

n=N/2+1

1
nm



 .

Using, that for any r = 1, 2, . . ., and m ≥ 2

+∞∑

n=r+1

1
nm

≤
∫ ∞

r

dτ

τm
=

1
m − 1

r−m+1,

x
1/x2

r, r+1,r+2

1/(r + 1)2

we deduce that

|φN (x) − f(x)| ≤ cm!
αm+1

πm

[
1

(N/2)m
+

2
(m − 1)(N/2)m−1

]

≤ cm!
( α

πN

)m−1

, m ≥ 2,

where we have used a generic constant c > 0. Hence, |φN − f | = O(N−p) for any p = 1, 2, . . . and
we deduce that the Fourier approximation of an analytic periodic function is of infinite order.

In order to get a rough idea on the magnitude of the constant we can use Stirling’s formula

m! ≈
√

2πmm+1/2e−m

to get

m!
( α

πN

)m−1

≈
√

2πm
( α

πN

)m−1 (m

e

)m

,

for large m.

Definition 3.6 (Convergence at spectral speed) An N -point approximation φN of a function f con-
verges to f at spectral speed if |φN−f | decays pointwise in [−1, 1] faster than O(N−p) for any p = 1, 2, . . ..

Remark 3.7 It is possible to prove that there exists a c1, w > 0 such that |φN (x) − f(x)| ≤ c1e
−wN

forall N = 0, 1, . . . uniformly in [−1, 1]. Thus, convergence is at least at an exponential rate.
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