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Numerical Analysis – Lecture 12

Method 3.8 (The algebra of Fourier expansions) Let A be the set of all functions f : [−1, 1] → C,
which are analytic in [−1, 1], periodic with period 2, and that can be extended analytically into the complex
plane. Then A is a linear space, i.e., f, g ∈ A and a ∈ C then f + g ∈ A and af ∈ A. In particular,
with f and g expressed in its Fourier series, i.e.,

f(x) =
∞∑

n=−∞

f̂neiπnx, g(x) =
∞∑

n=−∞

ĝneiπnx

we have

f(x) + g(x) =
∞∑

n=−∞

(f̂n + ĝn)eiπnx, a ∙ f(x) =
∞∑

n=−∞

af̂neiπnx (3.3)

and

f(x) ∙ g(x) =
∞∑

n=−∞

(
∞∑

m=−∞

f̂n−mĝm

)

eiπnx =
∞∑

n=−∞

(
f̂ ∗ ĝ

)

n
eiπnx, (3.4)

where ∗ denotes the convolution operator, hence f(x) ∙ g(x) = (f̂ ∗ ĝ)̌, where ˇ denotes the inverse
Fourier transform. Moreover, if f ∈ A then f ′ ∈ A and

f ′(x) = iπ

∞∑

n=−∞

n ∙ f̂neiπnx. (3.5)

Since {f̂n} decays faster than O(n−m) for all m ∈ Z+, this provides that all derivatives of f have
rapidly convergent Fourier expansions.

Example 3.9 (Application to differential equations) Consider the two-point boundary value prob-
lem: y = y(x), −1 ≤ x ≤ 1 solves

y′′ + a(x)y′ + b(x)y = f(x), y(−1) = y(1), (3.6)

where a, b, f ∈ A and we seek a periodic solution y ∈ A for (3.6). Substituting y, a, b and f by its
Fourier series and using (3.3)-(3.5) we obtain an infinite dimensional system of linear equations
for the Fourier coefficients ŷn:

−π2n2ŷn + iπ
∞∑

m=−∞

mân−mŷm +
∞∑

m=−∞

b̂n−mŷm = f̂n, n ∈ Z. (3.7)

Since a, b and f ∈ A their Fourier coefficients decrease rapidly, like O(n−m) for every m =
0, 1, 2, . . .. Hence, we can truncate (3.7) into the N -dimensional system

−π2n2ŷn+iπ

N/2∑

m=−N/2+1

mân−mŷm+
N/2∑

m=−N/2+1

b̂n−mŷm = f̂n, for n = −N/2+1, . . . , N/2. (3.8)

Remark 3.10 The matrix of (3.8) is in general dense, but our theory predicts that fairly small
values of N , hence very small matrices, are sufficient for high accuracy. For instance: choosing
a(x) = f(x) = cos πx, b(x) = sin 2πx (which incidentally even leads to a sparse matrix) we get

N = 16 error of size 10−10

N = 22 error of size 10−15 (which is already hitting the accuracy of computer arithmetic)
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Method 3.11 (Computation of Fourier coefficients (DFT)) We have to compute

f̂n =
1
2

∫ 1

−1

f(τ)e−iπnτ dτ, n ∈ Z.

For this, suppose we wish to compute the integral on [−1, 1] of a function h ∈ A by means of
Riemann sums

∫ 1

−1

h(τ) dτ ≈
2
N

N/2∑

k=−N/2+1

h

(
2k

N

)

. (3.9)

We want to know how good this approximation is. As in Method 1.18, let ωN = e2πi/N . Then we
have

2
N

N/2∑

k=−N/2+1

h

(
2k

N

)

=
2
N

N/2∑

k=−N/2+1

∞∑

n=−∞

ĥne2πink/N =
2
N

∞∑

n=−∞

ĥn

N/2∑

k=−N/2+1

ωnk
N

=
2
N

∞∑

n=−∞

ĥn

N−1∑

k=0

ω
n(k+1−N/2)
N =

2
N

∞∑

n=−∞

ĥnω
−n(N/2−1)
N

N−1∑

k=0

ωnk
N .

Since ωN
N = 1 we have

N−1∑

k=0

ωkn
N =

{
N, n ≡ 0 mod N

0, n 6≡ 0 mod N.

Moreover, for n ≡ 0 mod N also ω
−n(N/2−1)
N = 1 and we deduce that

2
N

N/2∑

k=−N/2+1

h

(
2k

N

)

= 2
∞∑

r=−∞

ĥNr.

Hence, the error committed by the Riemann approximation is

2
N

N/2∑

k=−N/2+1

h

(
2k

N

)

−
∫ 1

−1

h(τ) dτ = 2
∞∑

r=−∞

ĥNr−
∫ 1

−1

h(τ) dτ = 2
∞∑

r=−∞

ĥNr−2ĥ0 = 2
∞∑

r=1

ĥNr+ĥ−Nr

Since h ∈ A, its Fourier coefficients decay at spectral rate and hence the error of (3.9) decays
spectrally as a function of N .

For h(x) = f(x)e−iπmx we obtain a spectral method for calculating the Fourier coefficients of
f :

f̂n ≈
1
N

N/2∑

k=−N/2+1

f

(
2k

N

)

ω−nk
N , n = −N/2 + 1, . . . , N/2,

where the sequence on the right-hand side is called the discrete Fourier transform (DFT) of f .

Revision 3.12 (The fast Fourier transform (FFT)) The fast Fourier transform (FFT) is a computa-
tional algorithm, which computes the leading N Fourier coefficients of a function in just O(N log2 N)
operations (cf. Algorithm 1.19). We assume that N is a power of 2, i.e. N = 2m = 2p, and for
y ∈ Π2m, denote by

y(E) = {y2j}j∈Z and y(O) = {y2j+1}j∈Z

the even and odd portions of y, respectively. Note that y(E), y(O) ∈ Πm. To execute FFT, we start
from vectors of unit length and in each s-th stage, s = 1...p, assemble 2p−s vectors of length 2s

from vectors of length 2s−1 with

x` = x
(E)
` + ω`

2sx
(O)
` , ` = 0, . . . , 2s−1. (3.10)

Therefore, it costs just s products to evaluate the first half of x, provided that x(E) and x(O) are
known. It actually costs nothing to evaluate the second half, since

x2s−1+` = x
(E)
` − ω`

2sx
(O)
` , l = 0, . . . , 2s−1−1.

Altogether, the cost of FFT is p2p−1 = 1
2N log2 N products.
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