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Numerical Analysis – Lecture 13
Problem 3.13 (The Poisson equation) We consider the Poisson equation

∇2u = f, −1 ≤ x, y ≤ 1, (3.11)

where f is analytic and obeys the periodic boundary conditions

f(−1, y) = f(1, y), −1 ≤ y ≤ 1, f(x,−1) = f(x, 1), −1 ≤ x ≤ 1.

Moreover, we add to (3.11) the following periodic boundary conditions

u(−1, y) = u(1, y), ux(−1, y) = ux(1, y), −1 ≤ y ≤ 1

u(x,−1) = u(x, 1), uy(x,−1) = uy(x, 1), −1 ≤ x ≤ 1.
(3.12)

With these boundary conditions alone a solution of (3.11) is only defined up to an additive con-
stant. Hence, we add a normalisation condition to fix the constant:

∫ 1

−1

∫ 1

−1

u(x, y) dx dy = 0. (3.13)

We have the spectrally convergent Fourier expansion

f(x, y) =
∞∑

k,l=−∞

f̂k,le
iπ(kx+ly)

and seek the Fourier expansion of u

u(x, y) =
∞∑

k,l=−∞

ûk,le
iπ(kx+ly).

Since

0 =
∫ 1

−1

∫ 1

−1

u(x, y) dx dy =
∞∑

k,l=−∞

ûk,l

∫ 1

−1

∫ 1

−1

eiπ(kx+ly) dx dy = û0,0,

and

∇2u(x, y) = −π2
∞∑

k,l=−∞

(k2 + l2)ûk,le
iπ(kx+ly),

together with (3.11), we have





ûk,l = −
1

(k2 + l2)π2
f̂k,l, k, l ∈ Z, (k, l) 6= (0, 0)

û0,0 = 0.

Matlab demo: See FFT with Spectral Methods at http://www.maths.cam.ac.uk/undergrad/
course/na/ii/poisson_equation/poisson_equation.php for an implementation of the
above numerical method for solving (3.11). In order to compute a solution to Poisson’s equation
download the m-files from the bottom of the page and run poisson equation.m with Matlab. You
can change the default forcing term f by changing g from sin(xpi) sin(ypi) to any other periodic
function you are interested in.

Remark 3.14 Applying a spectral method to the Poisson equation is not representative for its
application to other PDEs. The reason is the special structure of the Poisson equation. In fact,
φk,l = eiπ(kx+ly) are the eigenfunctions of the Laplace operator with

∇2φk,l = −π2(k2 + l2)φk,l,

and they obey periodic boundary conditions.
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Problem 3.15 (General second-order linear elliptic PDE) We consider the more general second-
order linear elliptic PDE

∇>(a∇u) = f, −1 ≤ x, y ≤ 1,

with a > 0, and a and f periodic. We again impose the periodic boundary conditions (3.12) and
the normalisation condition (3.13). We can rewrite

∇>(a∇u) =
∂

∂x
(aux) +

∂

∂y
(auy) = a∇2u + axux + ayuy

and get

− π2




∞∑

k,l=−∞

âk,le
iπ(kx+ly)








∞∑

k,l=−∞

(k2 + l2)ûk,le
iπ(kx+ly)





− π2




∞∑

k,l=−∞

kâk,le
iπ(kx+ly)








∞∑

k,l=−∞

kûk,le
iπ(kx+ly)





− π2




∞∑

k,l=−∞

lâk,le
iπ(kx+ly)








∞∑

k,l=−∞

lûk,le
iπ(kx+ly)





=
∞∑

k,l=−∞

f̂k,le
iπ(kx+ly),

where

a(x, y) =
∞∑

k,l=−∞

âk,le
iπ(kx+ly), f(x, y) =

∞∑

k,l=−∞

f̂k,le
iπ(kx+ly), u(x, y) =

∞∑

k,l=−∞

ûk,le
iπ(kx+ly)

In the next steps we replace the products by convolutions (using the bivariate version of (3.4)),
truncate the expansions to −N/2 + 1 ≤ k, l ≤ N/2 and impose the normalisation condition û0,0 =
0. This results in a system of N2 − 1 linear algebraic equations in the unknowns ûk,l, k, l =
−N/2 + 1, . . . , N/2, (k, l) 6= (0, 0):

− π2

N/2∑

m,n=−N/2+1

[
âk−m,l−n(m2 + n2)ûm,n + (k − m)âk−m,l−nmûm,n

+(l − n)âk−m,l−nnûm,n] = f̂k,l.

Matlab demo: See the online documentation for Spectral Methods for the Poisson Equation at http:
//www.maths.cam.ac.uk/undergrad/course/na/ii/poisson_equation/poisson_equation.
php for an exemplar Matlab code of how this can be implemented.

Discussion 3.16 (Analyticity and periodicity) The fast convergence of spectral methods rests on two prop-
erties of the underlying problem: analyticity and periodicity. If one is not satisfied the rate of convergence
in general drops to polynomial. However, to a certain extent, we can relax these two assumptions while still
retaining the substantive advantages of Fourier expansions.

• Relaxing analyticity: In general, the speed of convergence of the truncated Fourier series of a function f
depends on the smoothness of the function. In fact, the smoother the function the faster the truncated
series converges, i.e., for f ∈ Cp(−1, 1) we receive an O(N−p) order of convergence.
Spectral convergence can be recovered, once analyticity is replaced by the requirement that f ∈
C∞(−1, 1), i.e., f (m)(x) exists for all x ∈ (−1, 1) and m = 0, 1, 2, . . .. Consider, for instance, f(x) =

e−1/(1−x2). Then, f ∈ C∞(−1, 1) but cannot be extended analytically because of essential singulari-
ties at ±1. Nevertheless, one can show that |f̂n| ∼ O(e−cnα

), where c > 0 and α ≈ 0.44. While this is
slower than exponential convergence in the analytic case (cf. Remark 3.7), it is still faster than O(n−m)
for any integer m and hence, we have spectral convergence.

• Relaxing periodicity: Disappointingly, periodicity is necessary for spectral convergence. Once this con-
dition is dropped, we are back to the setting of Theorem 3.3, i.e., Fourier series converge as O(N−1)
unless f(−1) = f(1). One way around this is to change our set of basis functions, e.g., to Chebyshev
polynomials.
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