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Numerical Analysis – Lecture 14

Revision 3.17 (Chebyshev polynomials) Let Tn(x) = cos (n arccos x), n ≥ 0. Each Tn is a poly-
nomial of degree n, i.e.,

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x, . . . ,

and is called the nth Chebyshev polynomial (of the first kind). They form a sequence of orthogonal
polynomials, which are orthogonal with respect to the weight function (1 − x2)−1/2 in (−1, 1). In
fact, we have

∫ 1

−1

Tm(x)Tn(x)
dx

√
1 − x2

=






π, m = n = 0
π
2 , m = n ≥ 1, m, n ∈ Z

0, m 6= n,

(3.14)

(where this can be proven by letting x = cos θ and using the identity Tn(cos θ) = cos nθ). More-
over, the sequence Tn obeys the three-term recurrence relation

Tn+1(x) = 2xTn(x) − Tn−1(x), n = 1, 2, . . . .

Method 3.18 (Non-periodic problems and Chebyshev methods) Since {Tn}∞n=0 form an orthog-
onal sequence we can expand a general integrable function f in

f(x) =
∞∑

n=0

f̆nTn(x), (3.15)

with coefficients f̆n, n = 0, 1, 2, . . .. Multiplying (3.15) by Tm(x) (1 − x2)−1/2 and integrating for
x ∈ (−1, 1) yields

∫ 1

−1

f(x)Tm(x)
dx

√
1 − x2

=
∞∑

n=0

f̆n

∫ 1

−1

Tn(x)Tm(x)
dx

√
1 − x2

.

Further, using the orthogonality property (3.14) results in an explicit expression for the coefficients

f̆0 =
1
π

∫ 1

−1

f(x)
dx

√
1 − x2

, f̆n =
2
π

∫ 1

−1

f(x)Tn(x)
dx

√
1 − x2

, n = 1, 2, . . . .

Next, letting x = cos θ we obtain

∫ 1

−1

f(x)Tn(x)
dx

√
1 − x2

=
∫ π

0

f(cos θ)Tn(cos θ) dθ =
1
2

∫ π

−π

f(cos θ) cos nθ dθ

The connection to Fourier expansions is apparent, given that cos nθ = 1
2 (einθ + e−inθ). More

precisely, the Fourier transform of a function g defined in the interval [a, b], a < b, and which is
periodic with period b − a, is given by the sequence

ĝn =
1

b − a

∫ b

a

g(τ)e−
2πinτ
b−a dτ, n ∈ Z.

In particular, letting g(x) = f(cos x) and [a, b] = [−π, π], we have

ĝn =
1
2π

∫ π

−π

g(τ)e−inτ dτ, n ∈ Z.

Therefore, ∫ 1

−1

f(x)Tn(x)
dx

√
1 − x2

=
π

2
(ĝ−n + ĝn)
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and we deduce that

f̆n =

{
ĝ0, n = 0

ĝ−n + ĝn, n = 1, 2, . . . .

Discussion 3.19 For a general integrable function f the computation of its Chebyshev expansion
is equivalent to the Fourier expansion of the function g(x) = f(cos x). Since the latter is periodic
with period 2π, we can use a DFT to compute f̆n and hence keep the benefits of periodic functions.
In particular, if f can be analytically extended, then f̆n decays spectrally fast for n � 1. Hence, the
Chebyshev expansion inherits the rapid convergence of spectral methods without ever assuming
that f is periodic.

Method 3.20 (The algebra of Chebyshev expansions) Let B be the set of analytic functions in
[−1, 1] that can be extended analytically into the complex plane. We identify each such function
with its Chebyshev expansion. Like the set A, the set B is a linear space and is closed under
multiplication. In particular, we have

Tm(x)Tn(x) = cos (m arccos x) cos (n arccos x)

=
1
2

[cos ((m − n) arccos x) + cos ((m + n) arccos x)] =
1
2
[T|m−n|(x) + Tm+n(x)]

and hence,

f(x)g(x) =
∞∑

m=0

f̆mTm(x) ∙
∞∑

n=0

ğnTn(x) =
1
2

∞∑

m,n=0

f̆mğn[T|m−n|(x) + Tm+n(x)]

=
1
2

∞∑

m,n=0

f̆m(ğ|m−n| + ğm+n)Tn(x).

Lemma 3.21 (Derivatives of Chebyshev polynomials) The derivatives of Chebyshev polynomials can
be expressed explicitly as the linear combinations

T ′
2n(x) = 4n

n−1∑

l=0

T2l+1(x), (3.16)

T ′
2n+1(x) = (2n + 1)T0(x) + 2(2n + 1)

n∑

l=1

T2l(x). (3.17)

Proof. We prove (3.16). The proof for (3.17) follows similar arguments. We have T ′
2n(x) =

2n sin(2n arccos x)(1 − x2)−1/2, and hence T ′
2n(cos θ) sin θ = 2n sin (2nθ). On the other hand

4n sin θ

n−1∑

l=0

T2l+1(cos θ) = 4n

n−1∑

l=0

cos (2l + 1)θ sin θ = 2n

n−1∑

l=0

(sin (2l + 2)θ − sin 2lθ) = 2n sin 2nθ.

�

Remark 3.22 (Application to PDEs) With Lemma 3.21 all derivatives of u can be expressed in an
explicit form as a Chebyshev expansion (cf. Exercise 19 on Example Sheets). For the computation
of the Chebyshev coefficients the function f has to be sampled at the so-called Chebyshev points
cos (2πk/N), k = −N/2 + 1, . . . , N/2. This results into a grid, which is denser towards the edges.
For elliptic problems this is not problematic, however for initial value PDEs such grids can cause
numerical instabilities.
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