Mathematical Tripos Part II: Michaelmas Term 2014

Numerical Analysis - Lecture 14

Revision 3.17 (Chebyshev polynomials) Let $T_{n}(x)=\cos (n \arccos x), n \geq 0$. Each T_{n} is a polynomial of degree n, i.e.,

$$
T_{0}(x)=1, T_{1}(x)=x, T_{2}(x)=2 x^{2}-1, T_{3}(x)=4 x^{3}-3 x, \ldots,
$$

and is called the nth Chebyshev polynomial (of the first kind). They form a sequence of orthogonal polynomials, which are orthogonal with respect to the weight function $\left(1-x^{2}\right)^{-1 / 2}$ in $(-1,1)$. In fact, we have

$$
\int_{-1}^{1} T_{m}(x) T_{n}(x) \frac{d x}{\sqrt{1-x^{2}}}= \begin{cases}\pi, & m=n=0 \tag{3.14}\\ \frac{\pi}{2}, & m=n \geq 1, m, n \in \mathbb{Z} \\ 0, & m \neq n,\end{cases}
$$

(where this can be proven by letting $x=\cos \theta$ and using the identity $T_{n}(\cos \theta)=\cos n \theta$). Moreover, the sequence T_{n} obeys the three-term recurrence relation

$$
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x), n=1,2, \ldots .
$$

Method 3.18 (Non-periodic problems and Chebyshev methods) Since $\left\{T_{n}\right\}_{n=0}^{\infty}$ form an orthogonal sequence we can expand a general integrable function f in

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} \breve{f}_{n} T_{n}(x), \tag{3.15}
\end{equation*}
$$

with coefficients $\breve{f}_{n}, n=0,1,2, \ldots$. Multiplying (3.15) by $T_{m}(x)\left(1-x^{2}\right)^{-1 / 2}$ and integrating for $x \in(-1,1)$ yields

$$
\int_{-1}^{1} f(x) T_{m}(x) \frac{d x}{\sqrt{1-x^{2}}}=\sum_{n=0}^{\infty} \breve{f}_{n} \int_{-1}^{1} T_{n}(x) T_{m}(x) \frac{d x}{\sqrt{1-x^{2}}}
$$

Further, using the orthogonality property (3.14) results in an explicit expression for the coefficients

$$
\breve{f}_{0}=\frac{1}{\pi} \int_{-1}^{1} f(x) \frac{d x}{\sqrt{1-x^{2}}}, \quad \breve{f}_{n}=\frac{2}{\pi} \int_{-1}^{1} f(x) T_{n}(x) \frac{d x}{\sqrt{1-x^{2}}}, n=1,2, \ldots
$$

Next, letting $x=\cos \theta$ we obtain

$$
\int_{-1}^{1} f(x) T_{n}(x) \frac{d x}{\sqrt{1-x^{2}}}=\int_{0}^{\pi} f(\cos \theta) T_{n}(\cos \theta) d \theta=\frac{1}{2} \int_{-\pi}^{\pi} f(\cos \theta) \cos n \theta d \theta
$$

The connection to Fourier expansions is apparent, given that $\cos n \theta=\frac{1}{2}\left(e^{i n \theta}+e^{-i n \theta}\right)$. More precisely, the Fourier transform of a function g defined in the interval $[a, b], a<b$, and which is periodic with period $b-a$, is given by the sequence

$$
\hat{g}_{n}=\frac{1}{b-a} \int_{a}^{b} g(\tau) e^{-\frac{2 \pi i n \tau}{b-a}} d \tau, n \in \mathbb{Z}
$$

In particular, letting $g(x)=f(\cos x)$ and $[a, b]=[-\pi, \pi]$, we have

$$
\hat{g}_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(\tau) e^{-i n \tau} d \tau, n \in \mathbb{Z}
$$

Therefore,

$$
\int_{-1}^{1} f(x) T_{n}(x) \frac{d x}{\sqrt{1-x^{2}}}=\frac{\pi}{2}\left(\hat{g}_{-n}+\hat{g}_{n}\right)
$$

and we deduce that

$$
\breve{f}_{n}= \begin{cases}\hat{g}_{0}, & n=0 \\ \hat{g}_{-n}+\hat{g}_{n}, & n=1,2, \ldots\end{cases}
$$

Discussion 3.19 For a general integrable function f the computation of its Chebyshev expansion is equivalent to the Fourier expansion of the function $g(x)=f(\cos x)$. Since the latter is periodic with period 2π, we can use a DFT to compute \breve{f}_{n} and hence keep the benefits of periodic functions. In particular, if f can be analytically extended, then \breve{f}_{n} decays spectrally fast for $n \gg 1$. Hence, the Chebyshev expansion inherits the rapid convergence of spectral methods without ever assuming that f is periodic.

Method 3.20 (The algebra of Chebyshev expansions) Let \mathcal{B} be the set of analytic functions in $[-1,1]$ that can be extended analytically into the complex plane. We identify each such function with its Chebyshev expansion. Like the set \mathcal{A}, the set \mathcal{B} is a linear space and is closed under multiplication. In particular, we have

$$
\begin{aligned}
T_{m}(x) T_{n}(x)= & \cos (m \arccos x) \cos (n \arccos x) \\
& =\frac{1}{2}[\cos ((m-n) \arccos x)+\cos ((m+n) \arccos x)]=\frac{1}{2}\left[T_{|m-n|}(x)+T_{m+n}(x)\right]
\end{aligned}
$$

and hence,

$$
\begin{aligned}
& f(x) g(x)=\sum_{m=0}^{\infty} \breve{f}_{m} T_{m}(x) \cdot \sum_{n=0}^{\infty} \breve{g}_{n} T_{n}(x)=\frac{1}{2} \sum_{m, n=0}^{\infty} \breve{f}_{m} \breve{g}_{n}\left[T_{|m-n|}(x)+T_{m+n}(x)\right] \\
&=\frac{1}{2} \sum_{m, n=0}^{\infty} \breve{f}_{m}\left(\breve{g}_{|m-n|}+\breve{g}_{m+n}\right) T_{n}(x) .
\end{aligned}
$$

Lemma 3.21 (Derivatives of Chebyshev polynomials) The derivatives of Chebyshev polynomials can be expressed explicitly as the linear combinations

$$
\begin{gather*}
T_{2 n}^{\prime}(x)=4 n \sum_{l=0}^{n-1} T_{2 l+1}(x) \tag{3.16}\\
T_{2 n+1}^{\prime}(x)=(2 n+1) T_{0}(x)+2(2 n+1) \sum_{l=1}^{n} T_{2 l}(x) . \tag{3.17}
\end{gather*}
$$

Proof. We prove (3.16). The proof for (3.17) follows similar arguments. We have $T_{2 n}^{\prime}(x)=$ $2 n \sin (2 n \arccos x)\left(1-x^{2}\right)^{-1 / 2}$, and hence $T_{2 n}^{\prime}(\cos \theta) \sin \theta=2 n \sin (2 n \theta)$. On the other hand

$$
4 n \sin \theta \sum_{l=0}^{n-1} T_{2 l+1}(\cos \theta)=4 n \sum_{l=0}^{n-1} \cos (2 l+1) \theta \sin \theta=2 n \sum_{l=0}^{n-1}(\sin (2 l+2) \theta-\sin 2 l \theta)=2 n \sin 2 n \theta
$$

Remark 3.22 (Application to PDEs) With Lemma 3.21 all derivatives of u can be expressed in an explicit form as a Chebyshev expansion (cf. Exercise 19 on Example Sheets). For the computation of the Chebyshev coefficients the function f has to be sampled at the so-called Chebyshev points $\cos (2 \pi k / N), k=-N / 2+1, \ldots, N / 2$. This results into a grid, which is denser towards the edges. For elliptic problems this is not problematic, however for initial value PDEs such grids can cause numerical instabilities.

