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Numerical Analysis – Lecture 15

Remark 3.23 (Chebyshev expansion for the derivatives) For an analytic function u, the coeffi-

cients of the Chebyshev expansion for its derivatives ŭ
(q)
n are given by

ŭ(q)
n =

2
cn

∞∑

p=n+1
n+p odd

p ŭ(q−1)
p , ∀q ≥ 1,

where

cn =

{
2 n = 0

1 n ≥ 1.

The above recursion for the expansion coefficients is based on Lemma 3.21. The case q = 1 is the
topic of Exercise 19 on the Example Sheets.

Method 3.24 (The spectral method for evolutionary PDEs) We consider the problem






∂u(x, t)
∂t

= Lu(x, t), x ∈ [−1, 1], t ≥ 0

u(x, 0) = g(x), x ∈ [−1, 1],
(3.18)

with appropriate boundary conditions on ∂[−1, 1] and where L is a linear operator, e.g., a dif-
ferential operator. We want to solve this problem by the method of lines (SD), using a spectral
method for the approximation of u and its derivatives in the spatial variable x. Then, in a general
spectral method, we seek solutions φN (x, t) with

φN (x, t) =
N/2∑

n=−N/2+1

an(t) ϕn(x),

where an(t) are the expansion coefficients and ϕn are basis functions chosen according to the
specific structure of (3.18), e.g., the Fourier expansion with an(t) = ûn(t), ϕn(x) = eiπnx for periodic
boundary conditions and a polynomial expansion such as the Chebyshev method with an(t) =
ŭn(t), ϕn(x) = Tn(x) for other than periodic boundary conditions. The spectral approximation in
space results into a system of ODEs for the expansion coefficients aN (t):

a′
N (t) = LNaN (t). (3.19)

Example 3.25 (The diffusion equation) We consider the diffusion equation for a function u =
u(x, t) {

ut = uxx, − 1 ≤ x ≤ 1, t ≥ 0

u(x, 0) = g(x), − 1 ≤ x ≤ 1,
(3.20)

with periodic boundary conditions and normalisation condition, i.e.,

u(x = −1, t) = u(x = 1, t), ux(x = −1, t) = ux(x = 1, t), t ≥ 0
∫ 1

−1

u(x, t) dx = 0, t ≥ 0.
(3.21)

We approximate u by its N -th order Fourier expansion in x

u(x, t) ≈
N/2∑

n=−N/2+1

ûn(t) eiπnx.
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Then, with (3.20), each coefficient ûn fulfills the ODE

û′
n(t) = −π2n2ûn(t), n = −N/2 + 1, . . . , N/2, (3.22)

whose exact solution is ûn(t) = e−π2n2t ĝn for n 6= 0 and û0(t) = 0 (due to the normalisation
condition in (3.21)). Again, the diffusion equation benefits from the special structure of the Lapla-
cian. However, for further reference, let us apply a finite difference approximation to (3.22), e.g.,
we approximate the ODE with the Euler method:

ûk+1 = (Id + ΔtÂ)ûk,

where Â = diag(−π2n2).

Example 3.26 (The diffusion equation with non-constant coefficient) We want to solve the dif-
fusion equation with non-constant coefficient a(x) for a function u = u(x, t)

{
ut = (a(x)ux)x, − 1 ≤ x ≤ 1, t ≥ 0

u(x, 0) = g(x), − 1 ≤ x ≤ 1,
(3.23)

conditioned to (3.21). Approximating u by its truncated Fourier expansion results in the following
system of ODEs for the coefficients ûn

û′
n(t) = −π2

N/2∑

m=−N/2+1

mn ân−m ûm(t), n = −N/2 + 1, . . . , N/2.

For the discretization in time we apply finite differences, i.e., can solve this system of ODEs with
our favourite ODE solver, e.g., with the Euler method. The latter amounts to compute

ûk+1
n = ûk

n − Δtπ2

N/2∑

m=−N/2+1

mn ân−m ûk
m,

or in vector form
ûk+1 = (I + ΔtÂ)ûk,

where Â = (âm,n) = (−π2mn ân−m)

Analysis 3.27 (Stability Analysis) We consider the following finite difference approximation for
(3.19)

ak+1 = A∗(Δt,LN ) ak, (3.24)

with stepsize Δt and a = (an). As in the previous section, the fully discrete scheme is stable pro-
vided that ‖A∗(Δt,LN )‖ ≤ 1. If A∗ is a normal matrix this requirement is equivalent to ρ(A∗) ≤ 1.

Fourier methods: For the truncated Fourier expansion a = û and the eigenvalue spectra λ′
n and

λ′′
n of the matrix approximating the first and second derivatives of u respectively are

λ′
n ∈ {−i(N/2 − 1), . . . ,−i, 0, i, . . . , N/2}, λ′′

n ∈ {−(N/2 − 1)2, . . . ,−1, 0,−1, . . . ,−N2/4}.

In particular, the maximum eigenvalue for the m-th order differentiation is max |λ(m)| =
(

N
2

)m
.

This means that Δt in explicit approximations (3.24) for linear PDEs with constant coefficients (for
which A∗ is just a diagonal matrix, hence normal) must scale like N−m, where m is the maximal
order of differentiation.

Remark 3.28 (Chebyshev methods for evolutionary problems) In general, the boundary condi-
tions for the considered PDEs have to be implemented in the Chebyshev expansion. If the bound-
ary conditions are to be imposed exactly, either the basis functions have to be slightly modified,
e.g., to Tn(x)−1 instead of Tn(x) for the boundary condition u(1) = 0, or we get additional condi-
tions on the expansion coefficients ŭn (cf. Exercise 20 from the Example Sheets). While the exact
imposition is in general not a problem for the numerical treatment of elliptic PDEs, as soon as the
boundary conditions depend on time we may run into serious stability issues. One way around
this is the use of penalty methods in which the boundary conditions is added to the scheme later
as a penalty term.

Matlab demo: See the online documentation Using Chebyshev Spectral Methods at http://www.
maths.cam.ac.uk/undergrad/course/na/ii/chebyshev/chebyshev.php for a simple
example of how boundary conditions can be installed.
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