Mathematical Tripos Part II: Michaelmas Term 2014

Numerical Analysis – Lecture 16

4 Iterative methods for linear algebraic systems

Technique 4.1 (Splitting) For $n \ge 0$ let $A \in \mathbb{R}^{n \times n}$, $b, x \in \mathbb{R}^n$, with A nonsingular. One way of solving a linear system Ax = b is to write it in the form

$$(A-B)\mathbf{x} = -B\mathbf{x} + \mathbf{b},$$

where the matrix B is chosen in such a way that it is relatively easy to solve the system (A-B)x = y for any given y (this also requires A-B to be nonsingular). Then the iteration commences with an estimate $x^{(0)}$ of the required solution, and generates the sequence $(x^{(k)})$ by solving

$$(A-B) \mathbf{x}^{(k+1)} = -B\mathbf{x}^{(k)} + \mathbf{b}, \qquad k = 0, 1, 2, \dots$$
 (4.1)

If the sequence converges to a limit, $x^{(k)} \to x^*$, say, then the limit has the property $(A - B)x^* = -Bx^* + b$. Therefore x^* is a solution of Ax = b as required.

Discussion 4.2 (Conditions for convergence) Suppose that A - B is nonsingular and let $B := -(A - B)^{-1}B$ the *iteration matrix* and $\mathbf{c} := (A - B)^{-1}\mathbf{b}$, hence $\mathbf{x}^{(k+1)} = H\mathbf{x}^{(k)} + \mathbf{c}$. Define \mathbf{x}^* by $A\mathbf{x}^* = \mathbf{b}$. Thus, since $(A - B)\mathbf{x}^* = -B\mathbf{x}^* + \mathbf{b}$, we have $\mathbf{x}^* = H\mathbf{x}^* + \mathbf{c}$. Then, denoting by $\mathbf{e}^{(k)} := \mathbf{x}^{(k)} - \mathbf{x}^*$ the *error* of the k-th iteration and subtracting equations, we have

$$e^{(k+1)} = He^{(k)} = \cdots = H^{k+1}e^{(0)}$$
.

In other words, if $H^k \stackrel{k \to \infty}{\longrightarrow} O$ then the iteration converges for all $e^{(0)}$.

Lemma 4.3 Suppose that H has n linearly independent eigenvectors and that the moduli of all its eigenvalues are less than one. Then $\mathbf{e}^{(k)} \stackrel{k \to \infty}{\longrightarrow} \mathbf{0}$.

Proof. Let $H\mathbf{v}_j = \lambda_j \mathbf{v}_j$, $j = 1, \ldots, n$, where $\|\mathbf{v}_j\| = 1$ (the Euclidean length). We can expand every vector in R^n as a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_n$. Thus, $\mathbf{e}^{(0)} = \sum_{j=1}^n \theta_j \mathbf{v}_j$, say. But $H^k \mathbf{v}_j = \lambda_j^k \mathbf{v}_j$, hence $\mathbf{e}^{(k)} = \sum_{j=1}^n \theta_j \lambda_j^k \mathbf{v}_j$. Consequently,

$$\|\mathbf{e}^{(k)}\| \leq \sum_{j=1}^{n} \|\theta_j \lambda_j^k \mathbf{v}_j\| = \sum_{j=1}^{n} |\theta_j \lambda_j^k| \leq \left(\sum_{j=1}^{n} |\theta_j|\right) \max_{j=1,\dots,n} |\lambda_j^k|.$$

Since $|\lambda_j| < 1$, j = 1, ..., n, it follows that $e^{(k)} \to 0$.

Lemma 4.4 *If the modulus of an eigenvalue of* H *is* ≥ 1 *then there exists a choice of* $\mathbf{x}^{(0)}$ *s.t. the iteration fails to converge.*

Proof. We use the notation from the last proof and assume that $|\lambda_1| > 1$. If λ_1 is complex then $H\bar{\mathbf{v}}_1 = \bar{\lambda}_1\bar{\mathbf{v}}_1$. We choose $\mathbf{e}^{(0)} = \frac{1}{2}(\mathbf{v}_1 + \bar{\mathbf{v}}_1)$ (clearly, if λ_j is real then $\mathbf{e}^{(0)} = \mathbf{v}_1$). Therefore $\mathbf{e}^{(k)} = \frac{1}{2}(\lambda_1^k\mathbf{v}_1 + \bar{\lambda}_1^k\bar{\mathbf{v}}_1)$. Except for the case $\lambda_1 = 1$ (when $\mathbf{e}^{(k)} = \mathbf{v}_1$) this precludes convergence. Finally, in the case $\lambda_1 = 1^1$ we choose $\mathbf{x}^{(0)} = \mathbf{c} = \mathbf{v}_1$. It follows by induction that $\mathbf{x}^{(k)} = (k+1)\mathbf{v}_1 - \mathbf{v}_1$ again, no convergence.

¹This may happen only if *A* is singular – verify!

Theorem 4.5 The iteration $\mathbf{x}^{(k+1)} = H\mathbf{x}^{(k)} + \mathbf{c}$, $k \in \mathbb{Z}^+$, converges to \mathbf{x}^* for every choice of $\mathbf{x}^{(0)}$ if and only if all the moduli of eigenvalues of H are less that 1.

Proof. If there are n independent eigenvectors, the theorem follows from the last two lemmas. Otherwise we can use the Jordan canonical form, but we leave out this analysis.

Remark 4.6 In other words Theorem 4.5 states that convergence $e^{(k)} \to 0$ is achieved for any choice of $x^{(0)}$ if and only if H has the property $\rho(H) < 1$. Here $\rho(H)$ is the spectral radius of H, which means the largest modulus of an eigenvalue of H. (Some of the eigenvalues may have nonzero imaginary parts.)

Example 4.7 An example of the situation mentioned above is when

$$H = \left[\begin{array}{cc} \lambda & 1 \\ 0 & \lambda \end{array} \right].$$

In that case

$$H^k = \left[\begin{array}{cc} \lambda^k & k\lambda^{k-1} \\ 0 & \lambda^k \end{array} \right],$$

therefore $H^k \to O$ iff $|\lambda| < 1$, as claimed in the theorem.

Note: There is more to iteration than just 'convergence'! For example, we achieve convergence with

$$H = \left[\begin{array}{ccc} 0.99 & 10^6 & 10^{12} \\ 0 & 0.99 & 10^{20} \\ 0 & 0 & 0.99 \end{array} \right],$$

but it will take quite a long time...

Method 4.8 (Jacobi and Gauss–Seidel) Both of these methods are versions of splitting which can be applied to any A with nonzero diagonal elements. We write A as the sum of three matrices $L_0 + D + U_0$: subdiagonal (strictly lower-triangular), diagonal and superdiagonal (strictly upper-triangular) portions of A, respectively.

- 1) *Jacobi method*. We set $\hat{A} B = \hat{D}$, the diagonal part of A, and we obtain the next iteration by solving the diagonal system $D\mathbf{x}^{(k+1)} = -(L_0 + U_0)\mathbf{x}^{(k)} + \mathbf{b}$.
- 2) Gauss–Seidel method. We take $A B = L_0 + D = L$, the lower-triangular part of A, and we generate the sequence $(\mathbf{x}^{(k)})$ by solving the triangular system $(L_0 + D)\mathbf{x}^{(k+1)} = -U_0\mathbf{x}^{(k)} + \mathbf{b}$. There is no need to invert $(L_0 + D)$, we calculate the components of $\mathbf{x}^{(k+1)}$ in sequence by forward substitution:

$$a_{ii}x_i^{(k+1)} = -\sum_{j < i} a_{ij}x_j^{(k+1)} - \sum_{j > i} a_{ij}x_j^{(k)} + b_i, \qquad i = 1..n.$$

As we mentioned above, the sequence $x^{(k)}$ converges to solution of Ax = b if the spectral radius of the iteration matrix, $H_{\rm J} = -D^{-1}(L_0 + U_0)$ or $H_{\rm GS} = -(L_0 + D)^{-1}U_0$, respectively, is less than one. Our next goal is to prove that this is the case for two important classes of matrices A: a) diagonally dominant and b) positive definite matrices. We start with recalling the simple, but very useful Gershgorin theorem.

Revision 4.9 (Gershgorin theorem) All eigenvalues of an $n \times n$ matrix A are contained in the union of the Gershgorin discs in the complex plane:

$$\sigma(A) \subset \bigcup_{i=1}^n \Gamma_i$$
, $\Gamma_i := \{ z \in \mathbb{C} : |z - a_{ii}| \le r_i \}$, $r_i := \sum_{i \ne i} |a_{ij}|$.