Mathematical Tripos Part II: Michaelmas Term 2014
 Numerical Analysis - Lecture 19

Approach 4.20 (Minimization of quadratic function) Let us assume for the time being that A is symmetric and positive definite. A different approach to constructing good iterative methods for solving systems of linear equations $A \boldsymbol{x}=\boldsymbol{b}$ is based on succesive minimization of the quadratic function

$$
\begin{equation*}
F_{1}\left(\boldsymbol{x}^{(k)}\right):=\left\|\boldsymbol{x}^{(k)}-\boldsymbol{x}^{*}\right\|_{A}^{2}=\left\|\boldsymbol{e}^{(k)}\right\|_{A}^{2} \tag{4.4}
\end{equation*}
$$

where $\|\boldsymbol{y}\|_{A}:=\sqrt{\boldsymbol{y}^{T} A \boldsymbol{y}}$ is a Euclidean-type distance (with positive definite A), and the minimizer is clearly the exact solution. An equivalent approach is to minimize the quadratic function

$$
\begin{equation*}
F(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}-\boldsymbol{x}^{T} \boldsymbol{b} \tag{4.5}
\end{equation*}
$$

which attains its minimum when $\nabla F(\boldsymbol{x})=A \boldsymbol{x}-\boldsymbol{b}=0$, and which does not involve the unknown \boldsymbol{x}^{*}. (It is easy to check that $F(\boldsymbol{x})=\frac{1}{2} F_{1}(\boldsymbol{x})-\frac{1}{2} C$, where $C=\boldsymbol{x}^{* T} A \boldsymbol{x}^{*}$ is a constant independent of k, hence equivalence.) So, we choose an iterative method that provides the condition $F\left(\boldsymbol{x}^{(k+1)}\right)<$ $F\left(\boldsymbol{x}^{(k)}\right)$. For example, both Jacobi and Gauss-Seidel methods do. We, however, strengthen this descent condition a bit, and turn to the following algorithm.
(a) We pick any starting vector $\boldsymbol{x}^{(0)} \in \mathbb{R}^{n}$; (b) for any k, stop if the residual $\boldsymbol{g}^{(k)}=A \boldsymbol{x}^{(k)}-$ \boldsymbol{b} is acceptably small; (c) otherwise, a search direction $\boldsymbol{d}^{(k)}$ is generated that satisfies $\left[\mathrm{d} F\left(\boldsymbol{x}^{(k)}+\right.\right.$ $\left.\left.\omega \boldsymbol{d}^{(k)}\right) / \mathrm{d} \omega\right]_{\omega=0}<0$; (d) finally, the value of $\omega>0$ that minimizes $F\left(\boldsymbol{x}^{(k)}+\omega \boldsymbol{d}^{(k)}\right.$) is calculated (we call it $\left.\omega^{(k)}\right)$, and the k-th iteration sets

$$
\begin{equation*}
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\omega^{(k)} \boldsymbol{d}^{(k)} . \tag{4.6}
\end{equation*}
$$

The definition (4.5) implies the identity

$$
\begin{equation*}
F\left(\boldsymbol{x}^{(k)}+\omega \boldsymbol{d}^{(k)}\right)=F\left(\boldsymbol{x}^{(k)}\right)+\omega \boldsymbol{d}^{(k) T} \boldsymbol{g}^{(k)}+\frac{1}{2} \omega^{2} \boldsymbol{d}^{(k) T} A \boldsymbol{d}^{(k)}, \quad \omega \in \mathbb{R} \tag{4.7}
\end{equation*}
$$

where $\boldsymbol{g}^{(k)}=\nabla F\left(\boldsymbol{x}^{(k)}\right)=A \boldsymbol{x}^{(k)}-\boldsymbol{b}$. So, the search direction has to satisfy $\boldsymbol{d}^{(k) T} \boldsymbol{g}^{(k)}<0$, which is possible, because termination occurs when $\boldsymbol{g}^{(k)}$ is zero, and $\omega^{(k)}$ that minimizes the expression (4.7) has the value

$$
\begin{equation*}
\omega^{(k)}=-\frac{\boldsymbol{d}^{(k) T} \boldsymbol{g}^{(k)}}{\boldsymbol{d}^{(k) T} A \boldsymbol{d}^{(k)}} \tag{4.8}
\end{equation*}
$$

Multiplying both parts of (4.6) with A and subtracting \boldsymbol{b} we see that successive residuals are connected by the rule $\boldsymbol{g}^{(k+1)}=\boldsymbol{g}^{(k)}+\omega^{(k)} A \boldsymbol{d}^{(k)}$, and with the value $\omega^{(k)}$ given above we have the orthogonality condition

$$
\boldsymbol{g}^{(k+1)}=\boldsymbol{g}^{(k)}+\omega^{(k)} A \boldsymbol{d}^{(k)} \perp \boldsymbol{d}^{(k)},
$$

Method 4.21 (The steepest descent method) This method makes the choice $\boldsymbol{d}^{(k)}=-\boldsymbol{g}^{(k)}$ for every k, the reason being that, locally, the gradient of a function F shows the direction of the sharpest decay of $F(\boldsymbol{x})$ at $\boldsymbol{x}=\boldsymbol{x}^{(k)}$. Thus, the iterations have the form

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\omega^{(k)}\left(A \boldsymbol{x}^{(k)}-\boldsymbol{b}\right), \quad k \geq 0 .
$$

It can be proved that, if the number of iterations is infinite, then the sequence $\boldsymbol{x}^{(k)}$, converges to the solution of the system $A \boldsymbol{x}=\boldsymbol{b}$ as required, but usually the speed of convergence is rather slow. The reason is that the iteration decreases the value of $F\left(\boldsymbol{x}^{(k+1)}\right)$ locally, relatively to $F\left(\boldsymbol{x}^{(k)}\right)$, but the global decrease, with respect to $F\left(\boldsymbol{x}^{(0)}\right)$, is often not that large. The use of conjugate directions provides a method with a global minimization property.

Figure 1: Courtesy of Anita Briginshaw.

Definition 4.22 (Conjugate directions) The vectors $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{n}$ are conjugate with respect to the symmetric and positive definite matrix A if they are nonzero and A-orthogonal: $\boldsymbol{u}^{T} A \boldsymbol{v}=0$.

The importance of conjugacy to Approach 4.20 depends on the fact that, for the conjugate directions $\left(\boldsymbol{d}^{(i)}\right)$, the value of $F_{1}\left(\boldsymbol{x}^{(k+1)}\right)$ obtained through step-by-step minimization coincides with the minimum of $F_{1}(\boldsymbol{y})$ taken over all $\boldsymbol{y}=\boldsymbol{x}^{(0)}+\sum_{i=0}^{k} a_{i} \boldsymbol{d}^{(i)}$ simultaneously, namely

$$
\arg \min _{a_{0}, \ldots, a_{k}} F_{1}(\boldsymbol{y})=\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(0)}+\sum_{i=0}^{k} \omega^{(i)} \boldsymbol{d}^{(i)}
$$

So, provided that a sequence of conjugate directions $\boldsymbol{d}^{(i)}$ is at hands, we have an iterative procedure with good approximation properties. The algorithm that follows constructs such $\boldsymbol{d}^{(i)}$ by A-orthogonalization of the sequence $\left(A^{i} \boldsymbol{g}^{(0)}\right)$. It is of the form described in the second paragraph of Approach 4.20.

Algorithm 4.23 (The conjugate gradient method) Here it is.
(A) For any initial vector $\boldsymbol{x}^{(0)}$, set $\boldsymbol{d}^{(0)}=-\boldsymbol{g}^{(0)}=-\left(A \boldsymbol{x}^{(0)}-\boldsymbol{b}\right)$;
(B) For $k \geq 0$, calculate $\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\omega^{(k)} \boldsymbol{d}^{(k)}$ and the residual

$$
\begin{equation*}
\boldsymbol{g}^{(k+1)}=\boldsymbol{g}^{(k)}+\omega^{(k)} A \boldsymbol{d}^{(k)}, \quad \text { with } \quad \omega^{(k)}=\left\{\boldsymbol{g}^{(k+1)} \perp \boldsymbol{d}^{(k)}\right\}=-\frac{\boldsymbol{d}^{(k) T} \boldsymbol{g}^{(k)}}{\boldsymbol{d}^{(k) T} A \boldsymbol{d}^{(k)}}, \quad k \geq 0 \tag{4.9}
\end{equation*}
$$

(C) For the same k, the next search direction is the vector

$$
\begin{equation*}
\boldsymbol{d}^{(k+1)}=-\boldsymbol{g}^{(k+1)}+\beta^{(k)} \boldsymbol{d}^{(k)}, \quad \text { with } \quad \beta^{(k)}=\left\{\boldsymbol{d}^{(k+1)} \perp A \boldsymbol{d}^{(k)}\right\}=\frac{\boldsymbol{g}^{(k+1) T} A \boldsymbol{d}^{(k)}}{\boldsymbol{d}^{(k) T} A \boldsymbol{d}^{(k)}}, \quad k \geq 0 \tag{4.10}
\end{equation*}
$$

Remark 4.24 It is possible to lift the restrictive condition on A being symmetric and positive definite by a simple trick. Suppose we want to solve $B x=c$, where $B \in \mathbb{R}^{n \times n}$ is nonsingular. We can convert the above system to the symmetric and positive definite setting by defining $A=B^{T} B, b=B^{T}$ c and solving $A x=b$ with the conjugate gradient algorithm 4.23.

