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Numerical Analysis – Lecture 19

Approach 4.20 (Minimization of quadratic function) Let us assume for the time being that A is
symmetric and positive definite. A different approach to constructing good iterative methods for
solving systems of linear equations Ax = b is based on succesive minimization of the quadratic
function

F1(x
(k)) := ‖x(k) − x∗‖2

A = ‖e(k)‖2
A , (4.4)

where ‖y‖A :=
√

yT Ay is a Euclidean-type distance (with positive definite A), and the minimizer
is clearly the exact solution. An equivalent approach is to minimize the quadratic function

F (x) = 1
2
xT Ax − xT b , (4.5)

which attains its minimum when ∇F (x) = Ax−b = 0, and which does not involve the unknown
x∗. (It is easy to check that F (x) = 1

2F1(x)− 1
2C, where C = x∗T Ax∗ is a constant independent of

k, hence equivalence.) So, we choose an iterative method that provides the condition F (x(k+1)) <
F (x(k)). For example, both Jacobi and Gauss–Seidel methods do. We, however, strengthen this
descent condition a bit, and turn to the following algorithm.

(a) We pick any starting vector x(0) ∈ Rn; (b) for any k, stop if the residual g(k) = Ax(k) −
b is acceptably small; (c) otherwise, a search direction d(k) is generated that satisfies [dF (x(k) +
ωd(k))/dω]ω=0 < 0; (d) finally, the value of ω > 0 that minimizes F (x(k)+ωd(k)) is calculated (we
call it ω(k)), and the k-th iteration sets

x(k+1) = x(k) + ω(k)d(k). (4.6)

The definition (4.5) implies the identity

F (x(k) + ωd(k)) = F (x(k)) + ωd(k)T g(k) + 1
2
ω2d(k)T Ad(k), ω ∈ R, (4.7)

where g(k) = ∇F (x(k)) = Ax(k) − b. So, the search direction has to satisfy d(k)T g(k) < 0, which
is possible, because termination occurs when g(k) is zero, and ω(k) that minimizes the expression
(4.7) has the value

ω(k) = −
d(k)T g(k)

d(k)T Ad(k)
. (4.8)

Multiplying both parts of (4.6) with A and subtracting b we see that successive residuals are
connected by the rule g(k+1) = g(k) + ω(k)Ad(k), and with the value ω(k) given above we have the
orthogonality condition

g(k+1) = g(k) + ω(k)Ad(k) ⊥ d(k) ,

Method 4.21 (The steepest descent method) This method makes the choice d(k) = −g(k) for ev-
ery k, the reason being that, locally, the gradient of a function F shows the direction of the sharpest
decay of F (x) at x = x(k). Thus, the iterations have the form

x(k+1) = x(k) − ω(k)(Ax(k) − b), k ≥ 0 .

It can be proved that, if the number of iterations is infinite, then the sequence x(k), converges to
the solution of the system Ax = b as required, but usually the speed of convergence is rather slow.
The reason is that the iteration decreases the value of F (x(k+1)) locally, relatively to F (x(k)), but
the global decrease, with respect to F (x(0)), is often not that large. The use of conjugate directions
provides a method with a global minimization property.
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(a) Worst case scenario of steepest descent (b) Conjugate gradient method applied to the same
problem as in (a)

Figure 1: Courtesy of Anita Briginshaw.

Definition 4.22 (Conjugate directions) The vectors u, v ∈ Rn are conjugate with respect to the
symmetric and positive definite matrix A if they are nonzero and A-orthogonal: uT Av = 0.

The importance of conjugacy to Approach 4.20 depends on the fact that, for the conjugate direc-
tions (d(i)), the value of F1(x(k+1)) obtained through step-by-step minimization coincides with
the minimum of F1(y) taken over all y = x(0) +

∑k
i=0 aid

(i) simultaneously, namely

arg min
a0,...,ak

F1(y) = x(k+1) = x(0) +
k∑

i=0

ω(i)d(i) .

So, provided that a sequence of conjugate directions d(i) is at hands, we have an iterative pro-
cedure with good approximation properties. The algorithm that follows constructs such d(i) by
A-orthogonalization of the sequence (Aig(0)). It is of the form described in the second paragraph
of Approach 4.20.

Algorithm 4.23 (The conjugate gradient method) Here it is.

(A) For any initial vector x(0), set d(0) = −g(0) = −(Ax(0) − b);

(B) For k ≥ 0, calculate x(k+1) = x(k) + ω(k)d(k) and the residual

g(k+1) = g(k) + ω(k)Ad(k), with ω(k) = { g(k+1) ⊥ d(k)} = −
d(k)T g(k)

d(k)T Ad(k)
, k ≥ 0. (4.9)

(C) For the same k, the next search direction is the vector

d(k+1) = −g(k+1) + β(k)d(k), with β(k) = {d(k+1) ⊥ Ad(k)} =
g(k+1)T Ad(k)

d(k)T Ad(k)
, k ≥ 0. (4.10)

Remark 4.24 It is possible to lift the restrictive condition on A being symmetric and positive definite by
a simple trick. Suppose we want to solve Bx = c, where B ∈ Rn×n is nonsingular. We can convert the
above system to the symmetric and positive definite setting by defining A = BT B, b = BT c and solving
Ax = b with the conjugate gradient algorithm 4.23.
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