Mathematical Tripos Part II: Michaelmas Term 2014 Numerical Analysis – Lecture 20

Algorithm 4.23 (The conjugate gradient method) Here it is.

(A) For any initial vector $x^{(0)}$, set $d^{(0)} = -g^{(0)} = -(Ax^{(0)} - b);$

(B) For $k \ge 0$, calculate $\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \omega^{(k)} \boldsymbol{d}^{(k)}$ and the residual

$$\boldsymbol{g}^{(k+1)} = \boldsymbol{g}^{(k)} + \omega^{(k)} A \boldsymbol{d}^{(k)}, \quad \text{with} \quad \omega^{(k)} = \{ \boldsymbol{g}^{(k+1)} \perp \boldsymbol{d}^{(k)} \} = -\frac{\boldsymbol{d}^{(k)T} \boldsymbol{g}^{(k)}}{\boldsymbol{d}^{(k)T} A \boldsymbol{d}^{(k)}}, \quad k \ge 0.$$
(4.9)

(C) For the same k, the next search direction is the vector

$$\boldsymbol{d}^{(k+1)} = -\boldsymbol{g}^{(k+1)} + \beta^{(k)}\boldsymbol{d}^{(k)}, \quad \text{with} \quad \beta^{(k)} = \{ \boldsymbol{d}^{(k+1)} \perp A\boldsymbol{d}^{(k)} \} = \frac{\boldsymbol{g}^{(k+1)T}A\boldsymbol{d}^{(k)}}{\boldsymbol{d}^{(k)T}A\boldsymbol{d}^{(k)}}, \quad k \ge 0.$$
(4.10)

Theorem 4.24 (Properties of Algorithm 4.23) For every integer $m \ge 0$, the conjugate gradient method enjoys the following properties.

- (1) The linear space spanned by the gradients $\{\mathbf{g}^{(i)}: i = 0...m\}$
 - (a) is the same as the linear space spanned by the search directions $\{d^{(i)}: i = 0...m\}$
 - (b) it coincides with the space $K_{m+1} = \text{span}\{A^i \boldsymbol{g}^{(0)} : i = 0..m\}$.
- (2) The gradients satisfy the orthogonality conditions: $\mathbf{g}^{(m)T}\mathbf{g}^{(i)} = \mathbf{g}^{(m)T}\mathbf{d}^{(i)} = 0$, for i < m.
- (3) The search directions are conjugate: $d^{(m)T}Ad^{(i)} = 0$, for i < m.

Proof. We use induction on $m \ge 0$, the assertions being trivial for m = 0, since $d^{(0)} = -g^{(0)}$, and (2)-(3) are void. Therefore, assuming that the assertions are true for some m = k, we ask if they remain true when m = k + 1.

(1) Formula $d^{(k+1)} = -g^{(k+1)} + \beta^{(k)}d^{(k)}$ in (4.10) readily implies that (1a), i.e. equivalence of the spaces spanned by $(g^{(i)})_0^k$ and $(d^{(i)})_0^k$, is preserved when k is increased to k + 1. Similarly, it follows from $g^{(k+1)} = g^{(k)} + \omega^{(k)}Ad^{(k)}$ in (4.9), that (1b) holds for m = k + 1 as well.

(2) Turning to assertion (2), we need g^(k+1) ⊥ g⁽ⁱ⁾ for i ≤ k, which is equivalent to g^(k+1) ⊥ d⁽ⁱ⁾ for i ≤ k because of (1a). The latter follows from (4.9): for i = k by definition of ω^(k), and for i < k by the inductive assumptions g^(k) ⊥ d⁽ⁱ⁾ and Ad^(k) ⊥ d⁽ⁱ⁾.
(3) It remains to justify (3), namely that d^(k+1) ⊥ Ad⁽ⁱ⁾ in (4.10). The value of β^(k)

(3) It remains to justify (3), namely that $d^{(k+1)} \perp Ad^{(i)}$ in (4.10). The value of $\beta^{(k)}$ in (4.10) is defined to give $d^{(k+1)} \perp Ad^{(k)}$, so we need $d^{(k+1)} \perp Ad^{(i)}$ for i < k. By the inductive hypothesis $d^{(k)} \perp Ad^{(i)}$, hence it is sufficient to establish that $g^{(k+1)} \perp Ad^{(i)}$ for i < k. Now, the formula (4.9) yields $Ad^{(i)} = (g^{(i+1)} - g^{(i)})/\omega^{(i)}$, therefore we require the conditions $g^{(k+1)} \perp (g^{(i+1)} - g^{(i)})$ for i < k, and they are a consequence of the assertion (2) for m = k + 1 obtained previously.

Corollary 4.25 (A termination property) If Algorithm 4.23 is applied in exact arithmetic, then, for any $\mathbf{x}^{(0)} \in \mathbb{R}^n$, termination occurs after at most *n* iterations.

Proof. Assertion (2) of Theorem 4.24 states that residuals $(g^{(k)})_{k\geq 0}$ form a sequence of mutually orthogonal vectors in \mathbb{R}^n . Therefore at most *n* of them can be nonzero.

Standard Form 4.26 (Reformulation of the conjugate gradient method) We now simplify and reformulate Algorithm 4.23. Specifically, we write the parameters $\omega^{(k)}$ and $\beta^{(k)}$ in (4.9)-(4.10) as

$$\omega^{(k)} = -\frac{\boldsymbol{d}^{(k)T}\boldsymbol{g}^{(k)}}{\boldsymbol{d}^{(k)T}A\boldsymbol{d}^{(k)}} = \frac{\|\boldsymbol{g}^{(k)}\|^2}{\boldsymbol{d}^{(k)T}A\boldsymbol{d}^{(k)}} > 0\,, \qquad \beta^{(k)} = \frac{\boldsymbol{g}^{(k+1)T}(\boldsymbol{g}^{(k+1)} - \boldsymbol{g}^{(k)})}{\boldsymbol{d}^{(k)T}(\boldsymbol{g}^{(k+1)} - \boldsymbol{g}^{(k)})} = \frac{\|\boldsymbol{g}^{(k+1)}\|^2}{\|\boldsymbol{g}^{(k)}\|^2} > 0\,.$$

Here we used (for β) the fact that $Ad^{(k)}$ is a multiple of $g^{(k+1)} - g^{(k)}$ and orthogonality of $g^{(k+1)}$ to both $g^{(k)}$, $d^{(k)}$ proved above, and (for both β and ω) the property $d^{(k)T}g^{(k)} =$ $-\|g^{(k)}\|^2$ which follows from (4.10) with index k + 1. Furthermore, we let $x^{(0)}$ be the zero vector and we write $-r^{(k)}$ instead of $g^{(k)}$, where $r^{(k)}$ is the (sign reversed) residual $\boldsymbol{b} - A\boldsymbol{x}^{(k)}.$

Thus, Algorithm 4.23 takes the following form.

(1) Set k = 0, $\boldsymbol{x}^{(0)} = 0$, $\boldsymbol{r}^{(0)} = \boldsymbol{b}$, and $\boldsymbol{d}^{(0)} = \boldsymbol{r}^{(0)}$;

(2) Calculate the matrix vector product $\boldsymbol{v}^{(k)} = A\boldsymbol{d}^{(k)}$ and $\omega^{(k)} = \|\boldsymbol{r}^{(k)}\|^2/\boldsymbol{d}^{(k)T}\boldsymbol{v}^{(k)} > 0$

- 0;
- (3) Apply the formulae $x^{(k+1)} = x^{(k)} + \omega^{(k)} d^{(k)}$ and $r^{(k+1)} = r^{(k)} \omega^{(k)} v^{(k)}$;
- (4) Stop if $||\mathbf{r}^{(k+1)}||$ is acceptably small;
- (5) Set $d^{(k+1)} = r^{(k+1)} + \beta^{(k)} d^{(k)}$, where $\beta^{(k)} = ||r^{(k+1)}||^2 / ||r^{(k)}||^2 > 0$;
- (6) Increase k by one, and then go back to (2).

The total work is usually dominated by the number of iterations, multiplied by the time it takes to compute $v^{(k)} = Ad^{(k)}$. It follows from Corollary 4.25 that the conjugate gradient algorithm is highly suitable when most of the elements of A are zero, i.e. when *A* is *sparse*.

Definition 4.27 (Krylov subspace) Let *A* be an $n \times n$ matrix, $v \in \mathbb{R}^n$ nonzero, and $m \in \mathbb{N}$. The linear space $K_m(A, v) = Sp\{A^j v : j = 0...m - 1\}$ is said to be the *mth Krylov subspace* of \mathbb{R}^n .

Remark 4.28 (The Krylov subspaces of the conjugate gradient method) In the standard form of the method, we set $d^{(0)} = -q^{(0)} = b \in K_1(A, b)$, and from the formulas

$$g^{(k+1)} = g^{(k)} + \omega^{(k)} A d^{(k)}, \qquad d^{(k+1)} = -g^{(k+1)} + \beta^{(k)} d^{(k)}$$

we deduced by induction that

Sp {
$$\boldsymbol{g}^{(0)}, \boldsymbol{g}^{(1)}, \dots, \boldsymbol{g}^{(m)}$$
} = Sp { $\boldsymbol{g}^{(0)}, A\boldsymbol{g}^{(0)}, \dots, A^m \boldsymbol{g}^{(0)}$ } = $K_{m+1}(A, \boldsymbol{b})$.

By Theorem 4.24, the residuals $g^{(i)}$ are orthogonal to each other, thus, the number of nonzero residuals (and hence the number of iterations) is bounded from above by the largest dimension of the subspaces $K_m(A, b)$. The latter is *n* at most, but it can be smaller as the following consideration shows.

Lemma 4.29 (Properties of Krylov subspaces) Given A and nonzero v, let δ_m be the dimension of the Krylov subspace $K_m(A, v)$. Then the sequence $\{\delta_m\}_1^n$ increases monotonically and has the following properties.

1) There exists a positive integer $s \leq n$ such that $\delta_m = m$ for $m \leq s$ and $\delta_m = s$ for m > s.

2) If we can express v as $v = \sum_{i=1}^{s'} c_i w_i$, where (w_i) are eigenvectors of A corresponding to distinct eigenvalues and all (c_i) are nonzero, then s = s'.