Mathematical Tripos Part II: Michaelmas Term 2014

Numerical Analysis - Lecture 20

Algorithm 4.23 (The conjugate gradient method) Here it is.
(A) For any initial vector $\boldsymbol{x}^{(0)}$, set $\boldsymbol{d}^{(0)}=-\boldsymbol{g}^{(0)}=-\left(A \boldsymbol{x}^{(0)}-\boldsymbol{b}\right)$;
(B) For $k \geq 0$, calculate $\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\omega^{(k)} \boldsymbol{d}^{(k)}$ and the residual

$$
\begin{equation*}
\boldsymbol{g}^{(k+1)}=\boldsymbol{g}^{(k)}+\omega^{(k)} A \boldsymbol{d}^{(k)}, \quad \text { with } \quad \omega^{(k)}=\left\{\boldsymbol{g}^{(k+1)} \perp \boldsymbol{d}^{(k)}\right\}=-\frac{\boldsymbol{d}^{(k) T} \boldsymbol{g}^{(k)}}{\boldsymbol{d}^{(k) T} A \boldsymbol{d}^{(k)}}, \quad k \geq 0 \tag{4.9}
\end{equation*}
$$

(C) For the same k, the next search direction is the vector

$$
\begin{equation*}
\boldsymbol{d}^{(k+1)}=-\boldsymbol{g}^{(k+1)}+\beta^{(k)} \boldsymbol{d}^{(k)}, \quad \text { with } \quad \beta^{(k)}=\left\{\boldsymbol{d}^{(k+1)} \perp A \boldsymbol{d}^{(k)}\right\}=\frac{\boldsymbol{g}^{(k+1) T} A \boldsymbol{d}^{(k)}}{\boldsymbol{d}^{(k) T} A \boldsymbol{d}^{(k)}}, \quad k \geq 0 \tag{4.10}
\end{equation*}
$$

Theorem 4.24 (Properties of Algorithm 4.23) For every integer $m \geq 0$, the conjugate gradient method enjoys the following properties.
(1) The linear space spanned by the gradients $\left\{\boldsymbol{g}^{(i)}: i=0 \ldots m\right\}$
(a) is the same as the linear space spanned by the search directions $\left\{\boldsymbol{d}^{(i)}: i=0 \ldots m\right\}$
(b) it coincides with the space $K_{m+1}=\operatorname{span}\left\{A^{i} \boldsymbol{g}^{(0)}: i=0 . . m\right\}$.
(2) The gradients satisfy the orthogonality conditions: $\boldsymbol{g}^{(m) T} \boldsymbol{g}^{(i)}=\boldsymbol{g}^{(m) T} \boldsymbol{d}^{(i)}=0$, for $i<m$.
(3) The search directions are conjugate: $\boldsymbol{d}^{(m) T} A \boldsymbol{d}^{(i)}=0$, for $i<m$.

Proof. We use induction on $m \geq 0$, the assertions being trivial for $m=0$, since $\boldsymbol{d}^{(0)}=$ $-\boldsymbol{g}^{(0)}$, and (2)-(3) are void. Therefore, assuming that the assertions are true for some $m=k$, we ask if they remain true when $m=k+1$.
(1) Formula $\boldsymbol{d}^{(k+1)}=-\boldsymbol{g}^{(k+1)}+\beta^{(k)} \boldsymbol{d}^{(k)}$ in (4.10) readily implies that (1a), i.e. equivalence of the spaces spanned by $\left(\boldsymbol{g}^{(i)}\right)_{0}^{k}$ and $\left(\boldsymbol{d}^{(i)}\right)_{0}^{k}$, is preserved when k is increased to $k+1$. Similarly, it follows from $\boldsymbol{g}^{(k+1)}=\boldsymbol{g}^{(k)}+\omega^{(k)} A \boldsymbol{d}^{(k)}$ in (4.9), that (1b) holds for $m=k+1$ as well.
(2) Turning to assertion (2), we need $\boldsymbol{g}^{(k+1)} \perp \boldsymbol{g}^{(i)}$ for $i \leq k$, which is equivalent to $\boldsymbol{g}^{(k+1)} \perp \boldsymbol{d}^{(i)}$ for $i \leq k$ because of (1a). The latter follows from (4.9): for $i=k$ by definition of $\omega^{(k)}$, and for $i<k$ by the inductive assumptions $\boldsymbol{g}^{(k)} \perp \boldsymbol{d}^{(i)}$ and $A \boldsymbol{d}^{(k)} \perp \boldsymbol{d}^{(i)}$.
(3) It remains to justify (3), namely that $\boldsymbol{d}^{(k+1)} \perp A \boldsymbol{d}^{(i)}$ in (4.10). The value of $\beta^{(k)}$ in (4.10) is defined to give $\boldsymbol{d}^{(k+1)} \perp A \boldsymbol{d}^{(k)}$, so we need $\boldsymbol{d}^{(k+1)} \perp A \boldsymbol{d}^{(i)}$ for $i<k$. By the inductive hypothesis $\boldsymbol{d}^{(k)} \perp A \boldsymbol{d}^{(i)}$, hence it is sufficient to establish that $\boldsymbol{g}^{(k+1)} \perp A \boldsymbol{d}^{(i)}$ for $i<k$. Now, the formula (4.9) yields $A \boldsymbol{d}^{(i)}=\left(\boldsymbol{g}^{(i+1)}-\boldsymbol{g}^{(i)}\right) / \omega^{(i)}$, therefore we require the conditions $\boldsymbol{g}^{(k+1)} \perp\left(\boldsymbol{g}^{(i+1)}-\boldsymbol{g}^{(i)}\right)$ for $i<k$, and they are a consequence of the assertion (2) for $m=k+1$ obtained previously.

Corollary 4.25 (A termination property) If Algorithm 4.23 is applied in exact arithmetic, then, for any $\boldsymbol{x}^{(0)} \in \mathbb{R}^{n}$, termination occurs after at most n iterations.

Proof. Assertion (2) of Theorem 4.24 states that residuals $\left(\boldsymbol{g}^{(k)}\right)_{k \geq 0}$ form a sequence of mutually orthogonal vectors in \mathbb{R}^{n}. Therefore at most n of them can be nonzero.

Standard Form 4.26 (Reformulation of the conjugate gradient method) We now simplify and reformulate Algorithm 4.23. Specifically, we write the parameters $\omega^{(k)}$ and $\beta^{(k)}$ in (4.9)-(4.10) as
$\omega^{(k)}=-\frac{\boldsymbol{d}^{(k) T} \boldsymbol{g}^{(k)}}{\boldsymbol{d}^{(k) T} A \boldsymbol{d}^{(k)}}=\frac{\left\|\boldsymbol{g}^{(k)}\right\|^{2}}{\boldsymbol{d}^{(k) T} A \boldsymbol{d}^{(k)}}>0, \quad \beta^{(k)}=\frac{\boldsymbol{g}^{(k+1) T}\left(\boldsymbol{g}^{(k+1)}-\boldsymbol{g}^{(k)}\right)}{\boldsymbol{d}^{(k) T}\left(\boldsymbol{g}^{(k+1)}-\boldsymbol{g}^{(k)}\right)}=\frac{\left\|\boldsymbol{g}^{(k+1)}\right\|^{2}}{\left\|\boldsymbol{g}^{(k)}\right\|^{2}}>0$.
Here we used (for β) the fact that $A \boldsymbol{d}^{(k)}$ is a multiple of $\boldsymbol{g}^{(k+1)}-\boldsymbol{g}^{(k)}$ and orthogonality of $\boldsymbol{g}^{(k+1)}$ to both $\boldsymbol{g}^{(k)}, \boldsymbol{d}^{(k)}$ proved above, and (for both β and ω) the property $\boldsymbol{d}^{(k) T} \boldsymbol{g}^{(k)}=$ $-\left\|\boldsymbol{g}^{(k)}\right\|^{2}$ which follows from (4.10) with index $k+1$. Furthermore, we let $\boldsymbol{x}^{(0)}$ be the zero vector and we write $-\boldsymbol{r}^{(k)}$ instead of $\boldsymbol{g}^{(k)}$, where $\boldsymbol{r}^{(k)}$ is the (sign reversed) residual $b-A \boldsymbol{x}^{(k)}$.

Thus, Algorithm 4.23 takes the following form.
(1) Set $k=0, \boldsymbol{x}^{(0)}=0, \boldsymbol{r}^{(0)}=\boldsymbol{b}$, and $\boldsymbol{d}^{(0)}=\boldsymbol{r}^{(0)}$;
(2) Calculate the matrix vector product $\boldsymbol{v}^{(k)}=A \boldsymbol{d}^{(k)}$ and $\omega^{(k)}=\left\|\boldsymbol{r}^{(k)}\right\|^{2} / \boldsymbol{d}^{(k) T} \boldsymbol{v}^{(k)}>$ 0 ;
(3) Apply the formulae $\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\omega^{(k)} \boldsymbol{d}^{(k)}$ and $\boldsymbol{r}^{(k+1)}=\boldsymbol{r}^{(k)}-\omega^{(k)} \boldsymbol{v}^{(k)}$;
(4) Stop if $\left\|\boldsymbol{r}^{(k+1)}\right\|$ is acceptably small;
(5) Set $\boldsymbol{d}^{(k+1)}=\boldsymbol{r}^{(k+1)}+\beta^{(k)} \boldsymbol{d}^{(k)}$, where $\beta^{(k)}=\left\|\boldsymbol{r}^{(k+1)}\right\|^{2} /\left\|\boldsymbol{r}^{(k)}\right\|^{2}>0$;
(6) Increase k by one, and then go back to (2).

The total work is usually dominated by the number of iterations, multiplied by the time it takes to compute $\boldsymbol{v}^{(k)}=A \boldsymbol{d}^{(k)}$. It follows from Corollary 4.25 that the conjugate gradient algorithm is highly suitable when most of the elements of A are zero, i.e. when A is sparse.

Definition 4.27 (Krylov subspace) Let A be an $n \times n$ matrix, $\boldsymbol{v} \in \mathbb{R}^{n}$ nonzero, and $m \in \mathbb{N}$. The linear space $K_{m}(A, \boldsymbol{v})=\operatorname{Sp}\left\{A^{j} \boldsymbol{v}: j=0 \ldots m-1\right\}$ is said to be the m th Krylov subspace of \mathbb{R}^{n}.

Remark 4.28 (The Krylov subspaces of the conjugate gradient method) In the standard form of the method, we set $\boldsymbol{d}^{(0)}=-\boldsymbol{g}^{(0)}=\boldsymbol{b} \in K_{1}(A, \boldsymbol{b})$, and from the formulas

$$
\boldsymbol{g}^{(k+1)}=\boldsymbol{g}^{(k)}+\omega^{(k)} A \boldsymbol{d}^{(k)}, \quad \boldsymbol{d}^{(k+1)}=-\boldsymbol{g}^{(k+1)}+\beta^{(k)} \boldsymbol{d}^{(k)}
$$

we deduced by induction that

$$
\operatorname{Sp}\left\{\boldsymbol{g}^{(0)}, \boldsymbol{g}^{(1)}, \ldots, \boldsymbol{g}^{(m)}\right\}=\operatorname{Sp}\left\{\boldsymbol{g}^{(0)}, A \boldsymbol{g}^{(0)}, \ldots, A^{m} \boldsymbol{g}^{(0)}\right\}=K_{m+1}(A, \boldsymbol{b}) .
$$

By Theorem 4.24, the residuals $\boldsymbol{g}^{(i)}$ are orthogonal to each other, thus, the number of nonzero residuals (and hence the number of iterations) is bounded from above by the largest dimension of the subspaces $K_{m}(A, \boldsymbol{b})$. The latter is n at most, but it can be smaller as the following consideration shows.

Lemma 4.29 (Properties of Krylov subspaces) Given A and nonzero \boldsymbol{v}, let δ_{m} be the dimension of the Krylov subspace $K_{m}(A, \boldsymbol{v})$. Then the sequence $\left\{\delta_{m}\right\}_{1}^{n}$ increases monotonically and has the following properties.

1) There exists a positive integer $s \leq n$ such that $\delta_{m}=m$ for $m \leq s$ and $\delta_{m}=s$ for $m>s$.
2) If we can express \boldsymbol{v} as $\boldsymbol{v}=\sum_{i=1}^{s^{\prime}} c_{i} \boldsymbol{w}_{i}$, where $\left(\boldsymbol{w}_{i}\right)$ are eigenvectors of A corresponding to distinct eigenvalues and all $\left(c_{i}\right)$ are nonzero, then $s=s^{\prime}$.
