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Numerical Analysis – Lecture 20

Algorithm 4.23 (The conjugate gradient method) Here it is.

(A) For any initial vector x(0), set d(0) = −g(0) = −(Ax(0) − b);

(B) For k ≥ 0, calculate x(k+1) = x(k) + ω(k)d(k) and the residual

g(k+1) = g(k) + ω(k)Ad(k), with ω(k) = { g(k+1) ⊥ d(k)} = −
d(k)T g(k)

d(k)T Ad(k)
, k ≥ 0.

(4.9)
(C) For the same k, the next search direction is the vector

d(k+1) = −g(k+1) + β(k)d(k), with β(k) = {d(k+1) ⊥ Ad(k)} =
g(k+1)T Ad(k)

d(k)T Ad(k)
, k ≥ 0.

(4.10)

Theorem 4.24 (Properties of Algorithm 4.23) For every integer m ≥ 0, the conjugate gradi-
ent method enjoys the following properties.

(1) The linear space spanned by the gradients {g(i) : i = 0...m}
(a) is the same as the linear space spanned by the search directions {d(i) : i = 0...m}
(b) it coincides with the space Km+1 = span{Aig(0) : i = 0..m}.

(2) The gradients satisfy the orthogonality conditions: g(m)T g(i) = g(m)T d(i) = 0, for i < m.
(3) The search directions are conjugate: d(m)T Ad(i) = 0, for i < m.

Proof. We use induction on m ≥ 0, the assertions being trivial for m = 0, since d(0) =
−g(0), and (2)-(3) are void. Therefore, assuming that the assertions are true for some
m = k, we ask if they remain true when m = k + 1.

(1) Formula d(k+1) = −g(k+1) + β(k)d(k) in (4.10) readily implies that (1a), i.e. equiv-
alence of the spaces spanned by (g(i))k

0 and (d(i))k
0 , is preserved when k is increased to

k + 1. Similarly, it follows from g(k+1) = g(k) + ω(k)Ad(k) in (4.9), that (1b) holds for
m = k + 1 as well.

(2) Turning to assertion (2), we need g(k+1) ⊥ g(i) for i ≤ k, which is equivalent to
g(k+1) ⊥ d(i) for i ≤ k because of (1a). The latter follows from (4.9): for i = k by definition
of ω(k), and for i < k by the inductive assumptions g(k) ⊥ d(i) and Ad(k) ⊥ d(i).

(3) It remains to justify (3), namely that d(k+1) ⊥ Ad(i) in (4.10). The value of β(k)

in (4.10) is defined to give d(k+1) ⊥ Ad(k), so we need d(k+1) ⊥ Ad(i) for i < k. By the
inductive hypothesis d(k) ⊥ Ad(i), hence it is sufficient to establish that g(k+1) ⊥ Ad(i) for
i < k. Now, the formula (4.9) yields Ad(i) = (g(i+1) − g(i))/ω(i), therefore we require the
conditions g(k+1) ⊥ (g(i+1) − g(i)) for i < k, and they are a consequence of the assertion
(2) for m = k + 1 obtained previously. �

Corollary 4.25 (A termination property) If Algorithm 4.23 is applied in exact arithmetic, then,
for any x(0) ∈ Rn, termination occurs after at most n iterations.

Proof. Assertion (2) of Theorem 4.24 states that residuals (g(k))k≥0 form a sequence of
mutually orthogonal vectors in Rn. Therefore at most n of them can be nonzero. �
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Standard Form 4.26 (Reformulation of the conjugate gradient method) We now simplify
and reformulate Algorithm 4.23. Specifically, we write the parameters ω(k) and β(k) in
(4.9)-(4.10) as

ω(k) = −
d(k)T g(k)

d(k)T Ad(k)
=

‖g(k)‖2

d(k)T Ad(k)
> 0 , β(k) =

g(k+1)T (g(k+1) − g(k))

d(k)T (g(k+1) − g(k))
=

‖g(k+1)‖2

‖g(k)‖2
> 0 .

Here we used (for β) the fact that Ad(k) is a multiple of g(k+1) − g(k) and orthogonality
of g(k+1) to both g(k), d(k) proved above, and (for both β and ω) the property d(k)T g(k) =
−‖g(k)‖2 which follows from (4.10) with index k + 1. Furthermore, we let x(0) be the
zero vector and we write −r(k) instead of g(k), where r(k) is the (sign reversed) residual
b − Ax(k).

Thus, Algorithm 4.23 takes the following form.

(1) Set k = 0, x(0) = 0, r(0) = b, and d(0) = r(0);

(2) Calculate the matrix vector product v(k) = Ad(k) and ω(k) = ‖r(k)‖2/d(k)T v(k) >
0;

(3) Apply the formulae x(k+1) = x(k) + ω(k)d(k) and r(k+1) = r(k) − ω(k)v(k);

(4) Stop if ‖r(k+1)‖ is acceptably small;

(5) Set d(k+1) = r(k+1) + β(k)d(k), where β(k) = ‖r(k+1)‖2/‖r(k)‖2 > 0;

(6) Increase k by one, and then go back to (2).

The total work is usually dominated by the number of iterations, multiplied by the
time it takes to compute v(k) = Ad(k). It follows from Corollary 4.25 that the conjugate
gradient algorithm is highly suitable when most of the elements of A are zero, i.e. when
A is sparse.

Definition 4.27 (Krylov subspace) Let A be an n×n matrix, v ∈ Rn nonzero, and m ∈ N.
The linear space Km(A, v) = Sp{Ajv : j = 0...m−1} is said to be the mth Krylov subspace
of Rn.

Remark 4.28 (The Krylov subspaces of the conjugate gradient method) In the standard
form of the method, we set d(0) = −g(0) = b ∈ K1(A, b), and from the formulas

g(k+1) = g(k) + ω(k)Ad(k), d(k+1) = −g(k+1) + β(k)d(k)

we deduced by induction that

Sp {g(0), g(1), . . . , g(m)} = Sp {g(0), Ag(0), . . . , Amg(0)} = Km+1(A, b) .

By Theorem 4.24, the residuals g(i) are orthogonal to each other, thus, the number of
nonzero residuals (and hence the number of iterations) is bounded from above by the
largest dimension of the subspaces Km(A, b). The latter is n at most, but it can be smaller
as the following consideration shows.

Lemma 4.29 (Properties of Krylov subspaces) Given A and nonzero v, let δm be the dimen-
sion of the Krylov subspace Km(A, v). Then the sequence {δm}n

1 increases monotonically and has
the following properties.

1) There exists a positive integer s ≤ n such that δm = m for m ≤ s and δm = s for m > s.
2) If we can express v as v =

∑s′

i=1 ciwi, where (wi) are eigenvectors of A corresponding to
distinct eigenvalues and all (ci) are nonzero, then s = s′.
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