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Numerical Analysis — Lecture 21

Lemma 4.29 (Properties of Krylov subspaces) Given A and nonzero v, let 6., be the dimension of
the Krylov subspace K, (A,v). Then the sequence {0y, }} increases monotonically and has the following
properties.

1) There exists a positive integer s < n such that 6,, = m for m < sand 6,, = s for m > s.

2) If we can express v as v = Y ._, c;w;, where (w;) are eigenvectors of A corresponding to distinct
eigenvalues and all (c;) are nonzero, then s = s'.

Remark 4.30 Assumption in the second part (regarding v and w;) does not require that all the
eigenvalues of A should be distinct. It is sufficient to have n linearly independent eigenvectors.

Proof. 1) Clearly, K,,,(A,v) C Kp41(A,v) C R”, therefore d,, < dpnt1 < n. We further note
that §; = 1 (since A% = v # 0) and 6, < m, because each subspace K,, (A, v) is spanned by m
vectors. Let s be the greatest integer such that §; = s. Then s = §; < 0541 < s, therefore §,11 = J5
and the spaces K,(A,v) and K,.1(A,v) are the same. This implies that A°v belongs to K,(A4,v),

ie, Av = Z;;é ajAv. But then

s—1
ATy = Z ajAj”v, r >0,
J=0
and that shows that the spaces Ks;,4+1(A4,v) and K 4,(A,v) are the same for every r > 0. There-
fore, for every m > s, we have K, (A4, v) = K,(A,v) and respectively d,, = 05 = s.
2) Suppose now that v = Zf;l c;w;, where (w;) are eigenvectors of A with the corresponding
distinct eigenvalues \;. Then A7v = Zflzl ciXw;, and we deduce that

Ks(A,v) C Sp{wy,wa,...,wy}.

Since eigenvectors are linearly independent, it follows that s = s < §'.
Assume next that s < s’. We have already proved that in this case §; = d; = s, therefore the

vectors (A7 1;)8/_1 are linearly dependent. In other words, there exist ag, a1, ..., as—1, not all zero,
so that p(A)v := Z;;OI ajAlv = 0, where p(z) := Z;;OI ajz? is a polynomial of degree < s’ — 1.
Therefore,

0=p(A)v =p(A) Y ciw; = > p(Ai)ciw;.
=1 =1

Since the eigenvectors are linearly independent and all ¢; are nonzero, we deduce from the above
that p(\;) = 0 for i = 1...¢', i.e. that the polynomial p has s’ different roots = = A;. But this is
a contradiction because p is of degree < s’ — 1. Hence the assumption s < s’ is false, therefore
s = &, and the proof is complete. O

Application 4.31 (Number of iterations in CGM) It follows from the previous lemma that the
number of iterations of the CGM for solving Ax = b is at most the number of distinct eigenvalues
of A. Further, if b is expressed as a linear combination of eigenvectors of A with distinct eigenval-
ues, then the number of iterations is bounded from above by the number of nonzero terms in the
linear combination.

Technique 4.32 (Preconditioning) We change variables, x = PTZ, where P is a nonsingular nxn
matrix. Thus, instead of Az = b, we are solving the linear system

PAPTZ = Pb.
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Note that symmetry and positive definiteness of A imply that PAPT is also symmetric and pos-
itive definite. Therefore, we can apply conjugate gradients to the new system. This results in the
solution Z, hence = P”Z. This procedure is called the preconditioned conjugate gradient method
and P is called the preconditioner.

The condition number k(A) of a symmetric positive-definite matrix A is the ratio Amax/Amin
between the magnitude of its largest and the least eigenvalue. The closer is this number to 1, the
faster is convergence. The main idea of preconditioning is to pick P so that x(PT AP) is much
smaller than x(A), thus accelerating convergence.

The identity (PAPT) P = P(APT P)J implies that

dim K,,,(PAPT, Pb) = dim K,,,(APTP,b),

i.e. that the dimension of the Krylov subspace for the preconditioned CGM, is equal to the di-
mension of K,,(APT P,b). If we set

S7t:= PTP = (QQRT)™,

then it is suggestive to choose S = QQT as an approximation to A which is easy to invert, so that
AS~1is close to identity, thus

dim K,,,(APT P, b) = dim K,,(AS™',b) ~ dim K,,(I,b) < n.

1) The simplest choice of S is D = diag A.

2) Another possibility is to choose S as a band matrix with small bandwidth. For example,
solving the Poisson equation with the five-point formula, we may take S to be the tridiagonal
part of A. In that case we commence with the Cholesky factorization of S = QQ7, so that S~! =
Q~TQ, hence P = Q~'. The main expense in each step of the method is the computation of

z=Py=Q 'y

for some y € R", but note that computing Q 'y is the same as solving the linear system Qz =y,
which is cheap as @ is a triangular matrix.

3) One can also take P = L', where L is the lower triangular part of A (maybe imposing
some changes). For example, for the Poisson equation, with m = 20 hence dealing with 400 x 400
system, we take P! as the lower triangular part of A, but change the diagonal elements from 4
to 2. Then we get a computer precision after just 30 iterations.

Example 4.33 For the tridiagonal system Ax = b, we choose the preconditioner as follows.
2 -1 1 1-1
-1 2. -1 1 s |1 2
e . 5=QQT = S

-1 2 -1 1 -1 2

A=

The matrix S coincides with A except at the (1,1) entry. The matrix C = Q=7AQ ™" for the
preconditioned CGM has just two distinct eigenvalues, and we recover the exact solution just in
two steps.

Matlab demo: Download the Matlab GUI for Preconditioning of Conjugate Gradient from http:
/lIwww.maths.cam.ac.uk/undergrad/course/nalii/precond/precond.php . Run the
GUI to solve different systems of linear equations, trying different preconditioners P. You can
select from some preset preconditioners but can propose your own customised preconditioners
as well. What does preconditioning do to the spectrum of the system matrix?
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