
Dr J Lellmann

Mathematical Tripos Part II: Michaelmas Term 2014

Numerical Analysis – Lecture 21

Lemma 4.29 (Properties of Krylov subspaces) Given A and nonzero v, let δm be the dimension of
the Krylov subspace Km(A, v). Then the sequence {δm}n

1 increases monotonically and has the following
properties.

1) There exists a positive integer s ≤ n such that δm = m for m ≤ s and δm = s for m > s.

2) If we can express v as v =
∑s′

i=1 ciwi, where (wi) are eigenvectors of A corresponding to distinct
eigenvalues and all (ci) are nonzero, then s = s′.

Remark 4.30 Assumption in the second part (regarding v and wi) does not require that all the
eigenvalues of A should be distinct. It is sufficient to have n linearly independent eigenvectors.

Proof. 1) Clearly, Km(A, v) ⊆ Km+1(A, v) ⊆ Rn, therefore δm ≤ δm+1 ≤ n. We further note
that δ1 = 1 (since A0v = v 6= 0) and δm ≤ m, because each subspace Km(A, v) is spanned by m
vectors. Let s be the greatest integer such that δs = s. Then s = δs ≤ δs+1 ≤ s, therefore δs+1 = δs

and the spaces Ks(A, v) and Ks+1(A, v) are the same. This implies that Asv belongs to Ks(A, v),
i.e., Asv =

∑s−1
j=0 ajA

jv. But then

As+rv =
s−1∑

j=0

ajA
j+rv, r ≥ 0,

and that shows that the spaces Ks+r+1(A, v) and Ks+r(A, v) are the same for every r ≥ 0. There-
fore, for every m > s, we have Km(A, v) = Ks(A, v) and respectively δm = δs = s.

2) Suppose now that v =
∑s′

i=1 ciwi, where (wi) are eigenvectors of A with the corresponding

distinct eigenvalues λi. Then Ajv =
∑s′

i=1 ciλ
j
iwi, and we deduce that

Ks(A, v) ⊆ Sp{w1, w2, . . . , ws′}.

Since eigenvectors are linearly independent, it follows that δs = s ≤ s′.
Assume next that s < s′. We have already proved that in this case δs′ = δs = s, therefore the

vectors (Ajv)s′−1
0 are linearly dependent. In other words, there exist a0, a1, . . . , as′−1, not all zero,

so that p(A)v :=
∑s′−1

j=0 ajA
jv = 0, where p(x) :=

∑s′−1
j=0 ajx

j is a polynomial of degree ≤ s′ − 1.
Therefore,

0 = p(A)v = p(A)
s′
∑

i=1

ciwi =
s′
∑

i=1

p(λi)ciwi.

Since the eigenvectors are linearly independent and all ci are nonzero, we deduce from the above
that p(λi) = 0 for i = 1...s′, i.e. that the polynomial p has s′ different roots x = λi. But this is
a contradiction because p is of degree ≤ s′ − 1. Hence the assumption s < s′ is false, therefore
s = s′, and the proof is complete. �

Application 4.31 (Number of iterations in CGM) It follows from the previous lemma that the
number of iterations of the CGM for solving Ax = b is at most the number of distinct eigenvalues
of A. Further, if b is expressed as a linear combination of eigenvectors of A with distinct eigenval-
ues, then the number of iterations is bounded from above by the number of nonzero terms in the
linear combination.

Technique 4.32 (Preconditioning) We change variables, x = PT x̂, where P is a nonsingular n×n
matrix. Thus, instead of Ax = b, we are solving the linear system

PAP T x̂ = Pb .
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Note that symmetry and positive definiteness of A imply that PAP T is also symmetric and pos-
itive definite. Therefore, we can apply conjugate gradients to the new system. This results in the
solution x̂, hence x = PT x̂. This procedure is called the preconditioned conjugate gradient method
and P is called the preconditioner.

The condition number κ(A) of a symmetric positive-definite matrix A is the ratio λmax/λmin

between the magnitude of its largest and the least eigenvalue. The closer is this number to 1, the
faster is convergence. The main idea of preconditioning is to pick P so that κ(PT AP ) is much
smaller than κ(A), thus accelerating convergence.

The identity (PAP T )jP = P (APT P )j implies that

dim Km(PAP T , Pb) = dim Km(APT P, b) ,

i.e. that the dimension of the Krylov subspace for the preconditioned CGM, is equal to the di-
mension of Km(APT P, b). If we set

S−1 := PT P =: (QQT )−1,

then it is suggestive to choose S = QQT as an approximation to A which is easy to invert, so that
AS−1 is close to identity, thus

dim Km(APT P, b) = dim Km(AS−1, b) ≈ dim Km(I, b) � n.

1) The simplest choice of S is D = diag A.
2) Another possibility is to choose S as a band matrix with small bandwidth. For example,

solving the Poisson equation with the five-point formula, we may take S to be the tridiagonal
part of A. In that case we commence with the Cholesky factorization of S = QQT , so that S−1 =
Q−T Q, hence P = Q−1. The main expense in each step of the method is the computation of

z = Py = Q−1y

for some y ∈ Rn, but note that computing Q−1y is the same as solving the linear system Qz = y,
which is cheap as Q is a triangular matrix.

3) One can also take P = L−1, where L is the lower triangular part of A (maybe imposing
some changes). For example, for the Poisson equation, with m = 20 hence dealing with 400× 400
system, we take P−1 as the lower triangular part of A, but change the diagonal elements from 4
to 5

2 . Then we get a computer precision after just 30 iterations.

Example 4.33 For the tridiagonal system Ax = b, we choose the preconditioner as follows.

A =








2 −1

−1 2
. . .

. . .
. . . −1

−1 2








, Q =








1

−1 1
. . .

. . .

−1 1








, S = QQT =








1 −1

−1 2
. . .

. . .
. . . −1

−1 2








.

The matrix S coincides with A except at the (1, 1) entry. The matrix C = Q−T AQ−1 for the
preconditioned CGM has just two distinct eigenvalues, and we recover the exact solution just in
two steps.

Matlab demo: Download the Matlab GUI for Preconditioning of Conjugate Gradient from http:
//www.maths.cam.ac.uk/undergrad/course/na/ii/precond/precond.php . Run the
GUI to solve different systems of linear equations, trying different preconditioners P . You can
select from some preset preconditioners but can propose your own customised preconditioners
as well. What does preconditioning do to the spectrum of the system matrix?
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