Mathematical Tripos Part II: Michaelmas Term 2014

Numerical Analysis – Lecture 21

Lemma 4.29 (Properties of Krylov subspaces) Given A and nonzero v, let δ_m be the dimension of the Krylov subspace $K_m(A, v)$. Then the sequence $\{\delta_m\}_1^n$ increases monotonically and has the following properties.

1) There exists a positive integer $s \leq n$ such that $\delta_m = m$ for $m \leq s$ and $\delta_m = s$ for m > s.

2) If we can express v as $v = \sum_{i=1}^{s'} c_i w_i$, where (w_i) are eigenvectors of A corresponding to distinct eigenvalues and all (c_i) are nonzero, then s = s'.

Remark 4.30 Assumption in the second part (regarding v and w_i) does not require that all the eigenvalues of A should be distinct. It is sufficient to have n linearly independent eigenvectors.

Proof. 1) Clearly, $K_m(A, v) \subseteq K_{m+1}(A, v) \subseteq \mathbb{R}^n$, therefore $\delta_m \leq \delta_{m+1} \leq n$. We further note that $\delta_1 = 1$ (since $A^0 v = v \neq 0$) and $\delta_m \leq m$, because each subspace $K_m(A, v)$ is spanned by m vectors. Let s be the greatest integer such that $\delta_s = s$. Then $s = \delta_s \leq \delta_{s+1} \leq s$, therefore $\delta_{s+1} = \delta_s$ and the spaces $K_s(A, v)$ and $K_{s+1}(A, v)$ are the same. This implies that $A^s v$ belongs to $K_s(A, v)$, i.e., $A^s v = \sum_{j=0}^{s-1} a_j A^j v$. But then

$$A^{s+r}\boldsymbol{v} = \sum_{j=0}^{s-1} a_j A^{j+r} \boldsymbol{v}, \qquad r \ge 0,$$

and that shows that the spaces $K_{s+r+1}(A, v)$ and $K_{s+r}(A, v)$ are the same for every $r \ge 0$. Therefore, for every m > s, we have $K_m(A, v) = K_s(A, v)$ and respectively $\delta_m = \delta_s = s$.

2) Suppose now that $\boldsymbol{v} = \sum_{i=1}^{s'} c_i \boldsymbol{w}_i$, where (\boldsymbol{w}_i) are eigenvectors of A with the corresponding distinct eigenvalues λ_i . Then $A^j \boldsymbol{v} = \sum_{i=1}^{s'} c_i \lambda_i^j \boldsymbol{w}_i$, and we deduce that

$$K_s(A, \boldsymbol{v}) \subseteq \operatorname{Sp}\{\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_{s'}\}.$$

Since eigenvectors are linearly independent, it follows that $\delta_s = s \leq s'$.

Assume next that s < s'. We have already proved that in this case $\delta_{s'} = \delta_s = s$, therefore the vectors $(A^j \boldsymbol{v})_0^{s'-1}$ are linearly dependent. In other words, there exist $a_0, a_1, \ldots, a_{s'-1}$, not all zero, so that $p(A)\boldsymbol{v} := \sum_{j=0}^{s'-1} a_j A^j \boldsymbol{v} = 0$, where $p(x) := \sum_{j=0}^{s'-1} a_j x^j$ is a polynomial of degree $\leq s' - 1$. Therefore,

$$0 = p(A)\boldsymbol{v} = p(A)\sum_{i=1}^{s'} c_i \boldsymbol{w}_i = \sum_{i=1}^{s'} p(\lambda_i)c_i \boldsymbol{w}_i.$$

Since the eigenvectors are linearly independent and all c_i are nonzero, we deduce from the above that $p(\lambda_i) = 0$ for i = 1...s', i.e. that the polynomial p has s' different roots $x = \lambda_i$. But this is a contradiction because p is of degree $\leq s' - 1$. Hence the assumption s < s' is false, therefore s = s', and the proof is complete.

Application 4.31 (Number of iterations in CGM) It follows from the previous lemma that the number of iterations of the CGM for solving Ax = b is at most the number of distinct eigenvalues of *A*. Further, if *b* is expressed as a linear combination of eigenvectors of *A* with distinct eigenvalues, then the number of iterations is bounded from above by the number of nonzero terms in the linear combination.

Technique 4.32 (Preconditioning) We change variables, $x = P^T \hat{x}$, where *P* is a nonsingular $n \times n$ matrix. Thus, instead of Ax = b, we are solving the linear system

$$PAP^T \widehat{\boldsymbol{x}} = P\boldsymbol{b}$$

Note that symmetry and positive definiteness of A imply that PAP^T is also symmetric and positive definite. Therefore, we can apply conjugate gradients to the new system. This results in the solution \hat{x} , hence $x = P^T \hat{x}$. This procedure is called the *preconditioned conjugate gradient method* and P is called the *preconditioner*.

The *condition number* $\kappa(A)$ of a symmetric positive-definite matrix A is the ratio $\lambda_{\max}/\lambda_{\min}$ between the magnitude of its largest and the least eigenvalue. The closer is this number to 1, the faster is convergence. The main idea of preconditioning is to pick P so that $\kappa(P^TAP)$ is much smaller than $\kappa(A)$, thus accelerating convergence.

The identity $(PAP^T)^j P = P(AP^T P)^j$ implies that

$$\dim K_m(PAP^T, P\boldsymbol{b}) = \dim K_m(AP^T P, \boldsymbol{b}),$$

i.e. that the dimension of the Krylov subspace for the preconditioned CGM, is equal to the dimension of $K_m(AP^TP, \mathbf{b})$. If we set

$$S^{-1} := P^T P =: (QQ^T)^{-1},$$

then it is suggestive to choose $S = QQ^T$ as an approximation to A which is easy to invert, so that AS^{-1} is close to identity, thus

$$\dim K_m(AP^T P, \boldsymbol{b}) = \dim K_m(AS^{-1}, \boldsymbol{b}) \approx \dim K_m(I, \boldsymbol{b}) \ll n.$$

1) The simplest choice of *S* is D = diag A.

2) Another possibility is to choose *S* as a band matrix with small bandwidth. For example, solving the Poisson equation with the five-point formula, we may take *S* to be the tridiagonal part of *A*. In that case we commence with the Cholesky factorization of $S = QQ^T$, so that $S^{-1} = Q^{-T}Q$, hence $P = Q^{-1}$. The main expense in each step of the method is the computation of

$$\boldsymbol{z} = P\boldsymbol{y} = Q^{-1}\boldsymbol{y}$$

for some $y \in \mathbb{R}^n$, but note that computing $Q^{-1}y$ is the same as solving the linear system Qz = y, which is cheap as Q is a triangular matrix.

3) One can also take $P = L^{-1}$, where L is the lower triangular part of A (maybe imposing some changes). For example, for the Poisson equation, with m = 20 hence dealing with 400×400 system, we take P^{-1} as the lower triangular part of A, but change the diagonal elements from 4 to $\frac{5}{2}$. Then we get a computer precision after just 30 iterations.

Example 4.33 For the tridiagonal system Ax = b, we choose the preconditioner as follows.

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 & \ddots \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{bmatrix}, \qquad Q = \begin{bmatrix} 1 \\ -1 & 1 \\ & \ddots & \ddots \\ & & -1 & 1 \end{bmatrix}, \qquad S = QQ^{T} = \begin{bmatrix} 1 & -1 \\ -1 & 2 & \ddots \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{bmatrix}.$$

The matrix *S* coincides with *A* except at the (1,1) entry. The matrix $C = Q^{-T}AQ^{-1}$ for the preconditioned CGM has just two distinct eigenvalues, and we recover the exact solution just in two steps.

Matlab demo: Download the Matlab GUI for *Preconditioning of Conjugate Gradient* from http: //www.maths.cam.ac.uk/undergrad/course/na/ii/precond/precond.php. Run the GUI to solve different systems of linear equations, trying different preconditioners *P*. You can select from some preset preconditioners but can propose your own customised preconditioners as well. What does preconditioning do to the spectrum of the system matrix?