Mathematical Tripos Part II: Michaelmas Term 2014 Numerical Analysis – Lecture 24

Technique 5.15 (The QR iteration for symmetric matrices) We bring A to the upper Hessenberg form, so that QR algorithm commences from a symmetric tridiagonal matrix A_0 , and then Technique 5.14 is applied for every k as before. Since both the upper Hessenberg structure and symmetry is retained, each A_{k+1} is also *symmetric tridiagonal* too. It follows that, whenever a Givens rotation $\Omega^{[i,j]}$ combines either two adjacent rows or two adjacent columns of a matrix, the total number of nonzero elements in the new combination of rows or columns is at most five. Thus there is a bound on the work of each rotation that is independent of *n*. Hence each QR iteration requires just O(n) operations.

Matlab demo: Check out the Matlab GUI for QR iteration at http://www.maths.cam.ac.uk/ undergrad/course/na/ii/qr_hex/qr_hex.php, which demonstrates the effects of the QR algorithm on a square matrix of your choice.

Notation 5.16 To analyse the matrices A_k that occur in the QR algorithm 5.13, we introduce

$$Q_k = Q_0 Q_1 \cdots Q_k, \qquad R_k = R_k R_{k-1} \cdots R_0, \qquad k = 0, 1, \dots.$$
 (5.3)

Note that \bar{Q}_k is orthogonal and \bar{R}_k upper triangular.

Lemma 5.17 (Fundamental properties of \bar{Q}_k and \bar{R}_k) A_{k+1} is related to the original matrix A by the similarity transformation $A_{k+1} = \bar{Q}_k^T A \bar{Q}_k$. Further, $\bar{Q}_k \bar{R}_k$ is the QR factorization of A^{k+1} .

Proof. We prove the first assertion by induction. By (5.2), we have $A_1 = Q_0^T A_0 Q_0 = \bar{Q}_0^T A \bar{Q}_0$. Assuming $A_k = \bar{Q}_{k-1}^T A \bar{Q}_{k-1}$, equations (5.2)-(5.3) provide the first indentity

$$A_{k+1} = Q_k^T A_k Q_k = Q_k^T (\bar{Q}_{k-1}^T A \bar{Q}_{k-1}) Q_k = \bar{Q}_k^T A \bar{Q}_k.$$

The second assertion is true for k = 0, since $\bar{Q}_0 \bar{R}_0 = Q_0 R_0 = A_0 = A$. Again, we use induction, assuming $\bar{Q}_{k-1}\bar{R}_{k-1} = A^k$. Thus, using the definition (5.3) and the first statement of the lemma, we deduce that

$$Q_k \bar{R}_k = (Q_{k-1}Q_k)(R_k \bar{R}_{k-1}) = Q_{k-1}A_k R_{k-1} = Q_{k-1}(\bar{Q}_{k-1}^T A \bar{Q}_{k-1})R_{k-1}$$

= $A\bar{Q}_{k-1}\bar{R}_{k-1} = A \cdot A^k = A^{k+1}$

and the lemma is true.

Remark 5.18 (Relation between QR and the power method) Assume that the eigenvalues of *A* have different magnitudes,

$$|\lambda_1| < |\lambda_2| < \dots < |\lambda_n|, \quad \text{and let} \quad \boldsymbol{e}_1 = \sum_{i=1}^n c_i \boldsymbol{w}_i = \sum_{i=1}^m c_i \boldsymbol{w}_i$$
 (5.4)

be the expansion of the first coordinate vector in terms of the normalized eigenvectors of A, where m is the greatest integer such that $c_m \neq 0$.

Consider the first columns of both sides of the matrix equation $A^{k+1} = \bar{Q}_k \bar{R}_k$.

By the power method arguments, the vector $A^{k+1}e_1$ is a multiple of $\sum_{i=1}^{m} c_i(\lambda_i/\lambda_m)^{k+1}w_i$, so the first column of A^{k+1} tends to be a multiple of w_m for $k \gg 1$. On the other hand, if q_k is the first column of \bar{Q}_k , then, since \bar{R}_k is upper triangular, the first column of $\bar{Q}_k \bar{R}_k$ is a multiple of q_k .

Therefore q_k tends to be a multiple of w_m . Further, because both q_k and w_m have unit length, we deduce that $q_k = \pm w_m + h_k$, where h_k tends to zero as $k \to \infty$. Therefore,

$$A\boldsymbol{q}_{k} = \lambda_{m}\boldsymbol{q}_{k} + o(1), \quad k \to \infty.$$
(5.5)

г	_	
L		

Theorem 5.19 (The first column of A_k) Let conditions (5.4) be satisfied. Then, as $k \to \infty$, the first column of A_k tends to $\lambda_m e_1$, making A_k suitable for deflation.

Proof. By Lemma 5.17, the first column of A_{k+1} is $\bar{Q}_k^T A \bar{Q}_k e_1$, and, using (5.5), we deduce that

$$A_{k+1}\boldsymbol{e}_1 = \bar{Q}_k^T A \bar{Q}_k \boldsymbol{e}_1 = \bar{Q}_k^T A \boldsymbol{q}_k \stackrel{(5.5))}{=} \bar{Q}_k^T [\lambda_m \boldsymbol{q}_k + o(\mathbf{1})] \stackrel{(*)}{=} \lambda_m \boldsymbol{e}_1 + o(\mathbf{1}),$$

where in (*) we used that $\bar{Q}_k^T q_k = e_1$ by orthogonality of \bar{Q} , and that $\bar{Q}_k x = \mathcal{O}(x)$ because orthogonal mapping is isometry. \square

Remark 5.20 (Relation between QR and inverse iteration) In practice, the statement of Theorem 5.19 is hardly ever important, because usually, as $k \to \infty$, the off-diagonal elements in the bottom row of A_{k+1} tend to zero *much faster* than the off-diagonal elements in the first column. The reason is that, besides the connection with the power method in Remark 5.18, the QR algorithm also enjoys a close relation with inverse iteration (Method 5.5).

Similar to before, let

$$0 < |\lambda_1| < |\lambda_2| < \dots < |\lambda_n|, \quad \text{and let} \quad \boldsymbol{e}_n^T = \sum_{i=1}^n c_i \boldsymbol{v}_i^T = \sum_{i=s}^n c_i \boldsymbol{v}_i^T$$
(5.6)

be the expansion of the last coordinate row vector e_n^T in the basis of normalized *left eigenvectors* of A, i.e. $v_i^T A = \lambda_i v_i^T$, where s is the least integer such that $c_s \neq 0$.

Assuming that A is nonsingular, we can write the equation $A^{k+1} = \bar{Q}_k \bar{R}_k$ in the form $A^{-(k+1)} = \bar{Q}_k \bar{R}_k$

 $\bar{R}_k^{-1}\bar{Q}_k^T$. Consider the bottom rows of both sides of this equation $A^{-1} = Q_k R_k$ in the form $A^{-(k+1)} = (e_n^T \bar{R}_k^{-1})\bar{Q}_k^T$. By the inverse iteration arguments, the vector $e_n^T A^{-(k+1)}$ is a multiple of $\sum_{i=s}^n c_i(\lambda_s/\lambda_i)^{k+1} v_i^T$, so the bottom row of $A^{-(k+1)}$ tends to be multiple of v_s^T . On the other hand, let p_k^T be the bottom row of \bar{Q}_k^T . Since \bar{R}_k is upper triangular, its inverse \bar{R}_k^{-1} is upper triangular too, hence the bottom row of $\bar{R}_k^{-1}\bar{Q}_k^T$, is a multiple of p_k^T . Therefore, p_k^T tends to a multiple of v_s^T , and, because of their unit lengths, we have $p_k^T =$

 $\pm \boldsymbol{v}_s^T + \boldsymbol{h}_k^T$, where $\boldsymbol{h}_k \rightarrow 0$, i.e.,

$$\boldsymbol{p}_k^T \boldsymbol{A} = \lambda_s \boldsymbol{p}_k^T + o(1), \quad k \to \infty.$$
(5.7)

Theorem 5.21 (The bottom row of A_k **)** Let conditions (5.6) be satisfied. Then, as $k \to \infty$, the bottom row of A_k tends to $\lambda_s e_n^T$, making A_k suitable for deflation.

Proof. By Lemma 5.17, the bottom row of A_{k+1} is $e_n^T \bar{Q}_k^T A \bar{Q}_k$, and similarly to the previous proof we obtain

$$\boldsymbol{e}_{n}^{T}A_{k+1} = \boldsymbol{e}_{n}^{T}\bar{Q}_{k}^{T}A\bar{Q}_{k} = \boldsymbol{p}_{k}^{T}A\bar{Q}_{k} \stackrel{(5.7)}{=} [\lambda_{s}\boldsymbol{p}_{k}^{T} + o(1)]\bar{Q}_{k} = \lambda_{s}\boldsymbol{e}_{n}^{T} + o(1).$$
(5.8)
ity by orthogonality of \bar{Q}_{k} .

the last equality by orthogonality of \bar{Q}_k .

Technique 5.22 (Single shifts) As we saw in Method 5.5, there is a huge difference between power iteration and inverse iteration: the latter can be accelerated arbitrarily through the use of shifts. The better we can estimate $s_k \approx \lambda_s$, the more we can accomplish by a step of inverse iteration with the shifted matrix $A_k - s_k I$. Theorem 5.21 shows that the bottom right element $(A_k)_{nn}$ becomes a good estimate of λ_s . So, in the single shift technique, the matrix A_k is replaced by $A_k - s_k I$, where $s_k = (A_k)_{nn}$, before the QR factorization:

$$A_k - s_k I = Q_k R_k,$$

$$A_{k+1} = R_k Q_k + s_k I.$$

A good approximation $s_k = (A_k)_{nn}$ to the eigenvalue λ_s generates even better approximation of $s_{k+1} = (A_{k+1})_{nn}$ to λ_s , and convergence is accelerating at a higher and higher rate (it will be the so-called cubic convergence $|\lambda_s - s_{k+1}| \leq \gamma |\lambda_s - s_k|^3$). Note that, similarly to the original QR iteration, we have

$$A_{k+1} = Q_k^T (Q_k R_k + s_k I) Q_k = Q_k^T A_k Q_k ,$$

hence $A_{k+1} = \bar{Q}_k^T A \bar{Q}_k$, but note also that $\bar{Q}_k \bar{R}_k \neq A^{k+1}$, but we have instead

$$\bar{Q}_k \bar{R}_k = \prod_{m=0}^k (A - s_m I)$$