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Technique 5.15 (The QR iteration for symmetric matrices) We bring A to the upper Hessenberg
form, so that QR algorithm commences from a symmetric tridiagonal matrix A0, and then Tech-
nique 5.14 is applied for every k as before. Since both the upper Hessenberg structure and sym-
metry is retained, each Ak+1 is also symmetric tridiagonal too. It follows that, whenever a Givens
rotation Ω[i,j] combines either two adjacent rows or two adjacent columns of a matrix, the total
number of nonzero elements in the new combination of rows or columns is at most five. Thus
there is a bound on the work of each rotation that is independent of n. Hence each QR iteration
requires just O(n) operations.

Matlab demo: Check out the Matlab GUI for QR iteration at http://www.maths.cam.ac.uk/
undergrad/course/na/ii/qr_hex/qr_hex.php , which demonstrates the effects of the QR
algorithm on a square matrix of your choice.

Notation 5.16 To analyse the matrices Ak that occur in the QR algorithm 5.13, we introduce

Q̄k = Q0Q1 ∙ ∙ ∙Qk, R̄k = RkRk−1 ∙ ∙ ∙R0, k = 0, 1, . . . . (5.3)

Note that Q̄k is orthogonal and R̄k upper triangular.

Lemma 5.17 (Fundamental properties of Q̄k and R̄k) Ak+1 is related to the original matrix A by the
similarity transformation Ak+1 = Q̄T

k AQ̄k. Further, Q̄kR̄k is the QR factorization of Ak+1.

Proof. We prove the first assertion by induction. By (5.2), we have A1 = QT
0 A0Q0 = Q̄T

0 AQ̄0.
Assuming Ak = Q̄T

k−1AQ̄k−1, equations (5.2)-(5.3) provide the first indentity

Ak+1 = QT
k AkQk = QT

k (Q̄T
k−1AQ̄k−1)Qk = Q̄T

k AQ̄k .

The second assertion is true for k = 0, since Q̄0R̄0 = Q0R0 = A0 = A. Again, we use induction,
assuming Q̄k−1R̄k−1 = Ak. Thus, using the definition (5.3) and the first statement of the lemma,
we deduce that

Q̄kR̄k = (Q̄k−1Qk)(RkR̄k−1) = Q̄k−1AkR̄k−1 = Q̄k−1(Q̄
T
k−1AQ̄k−1)R̄k−1

= AQ̄k−1R̄k−1 = A ∙ Ak = Ak+1

and the lemma is true. �

Remark 5.18 (Relation between QR and the power method) Assume that the eigenvalues of A
have different magnitudes,

|λ1| < |λ2| < ∙ ∙ ∙ < |λn|, and let e1 =
∑n

i=1 ciwi =
∑m

i=1 ciwi (5.4)

be the expansion of the first coordinate vector in terms of the normalized eigenvectors of A, where
m is the greatest integer such that cm 6= 0.

Consider the first columns of both sides of the matrix equation Ak+1 = Q̄kR̄k.
By the power method arguments, the vector Ak+1e1 is a multiple of

∑m
i=1 ci(λi/λm)k+1wi, so

the first column of Ak+1 tends to be a multiple of wm for k � 1. On the other hand, if qk is the
first column of Q̄k, then, since R̄k is upper triangular, the first column of Q̄kR̄k is a multiple of qk.

Therefore qk tends to be a multiple of wm. Further, because both qk and wm have unit length,
we deduce that qk = ±wm + hk, where hk tends to zero as k → ∞. Therefore,

Aqk = λmqk + o(1) , k → ∞ . (5.5)
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Theorem 5.19 (The first column of Ak) Let conditions (5.4) be satisfied. Then, as k → ∞, the first
column of Ak tends to λme1, making Ak suitable for deflation.

Proof. By Lemma 5.17, the first column of Ak+1 is Q̄T
k AQ̄ke1, and, using (5.5), we deduce that

Ak+1e1 = Q̄T
k AQ̄ke1 = Q̄T

k Aqk

(5.5))
= Q̄T

k [λmqk + o(1)]
(∗)
= λme1 + o(1) ,

where in (∗) we used that Q̄T
k qk = e1 by orthogonality of Q̄, and that Q̄kx = O(x) because

orthogonal mapping is isometry. �

Remark 5.20 (Relation between QR and inverse iteration) In practice, the statement of Theorem
5.19 is hardly ever important, because usually, as k → ∞, the off-diagonal elements in the bottom
row of Ak+1 tend to zero much faster than the off-diagonal elements in the first column. The rea-
son is that, besides the connection with the power method in Remark 5.18, the QR algorithm also
enjoys a close relation with inverse iteration (Method 5.5).

Similar to before, let

0 < |λ1| < |λ2| < ∙ ∙ ∙ < |λn|, and let eT
n =

∑n
i=1 civ

T
i =

∑n
i=s civ

T
i (5.6)

be the expansion of the last coordinate row vector eT
n in the basis of normalized left eigenvectors of

A, i.e. vT
i A = λiv

T
i , where s is the least integer such that cs 6= 0.

Assuming that A is nonsingular, we can write the equation Ak+1 =Q̄kR̄k in the form A−(k+1) =
R̄−1

k Q̄T
k . Consider the bottom rows of both sides of this equation: eT

nA−(k+1) = (eT
n R̄−1

k )Q̄T
k .

By the inverse iteration arguments, the vector eT
nA−(k+1) is a multiple of

∑n
i=s ci(λs/λi)k+1vT

i ,
so the bottom row of A−(k+1) tends to be multiple of vT

s . On the other hand, let pT
k be the bottom

row of Q̄T
k . Since R̄k is upper triangular, its inverse R̄−1

k is upper triangular too, hence the bottom
row of R̄−1

k Q̄T
k , is a multiple of pT

k .
Therefore, pT

k tends to a multiple of vT
s , and, because of their unit lengths, we have pT

k =
±vT

s + hT
k , where hk → 0, i.e.,

pT
k A = λsp

T
k + o(1) , k → ∞ . (5.7)

Theorem 5.21 (The bottom row of Ak) Let conditions (5.6) be satisfied. Then, as k → ∞, the bottom
row of Ak tends to λse

T
n , making Ak suitable for deflation.

Proof. By Lemma 5.17, the bottom row of Ak+1 is eT
n Q̄T

k AQ̄k, and similarly to the previous proof
we obtain

eT
nAk+1 = eT

n Q̄T
k AQ̄k = pT

k AQ̄k
(5.7)
= [λsp

T
k + o(1)] Q̄k = λse

T
n + o(1) . (5.8)

the last equality by orthogonality of Q̄k. �

Technique 5.22 (Single shifts) As we saw in Method 5.5, there is a huge difference between
power iteration and inverse iteration: the latter can be accelerated arbitrarily through the use
of shifts. The better we can estimate sk ≈ λs, the more we can accomplish by a step of inverse
iteration with the shifted matrix Ak − skI . Theorem 5.21 shows that the bottom right element
(Ak)nn becomes a good estimate of λs. So, in the single shift technique, the matrix Ak is replaced
by Ak−skI , where sk = (Ak)nn, before the QR factorization:

Ak − skI = QkRk,

Ak+1 = RkQk + skI.

A good approximation sk = (Ak)nn to the eigenvalue λs generates even better approximation of
sk+1 = (Ak+1)nn to λs, and convergence is accelerating at a higher and higher rate (it will be the
so-called cubic convergence |λs − sk+1| ≤ γ |λs − sk|3). Note that, similarly to the original QR
iteration, we have

Ak+1 = QT
k (QkRk + skI)Qk = QT

k AkQk ,

hence Ak+1 = Q̄T
k AQ̄k, but note also that Q̄kR̄k 6= Ak+1, but we have instead

Q̄kR̄k =
∏k

m=0(A − smI)
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