Mathematical Tripos Part II: Michaelmas Term 2014 Numerical Analysis - Lecture 24

Technique 5.15 (The QR iteration for symmetric matrices) We bring A to the upper Hessenberg form, so that QR algorithm commences from a symmetric tridiagonal matrix A_{0}, and then Technique 5.14 is applied for every k as before. Since both the upper Hessenberg structure and symmetry is retained, each A_{k+1} is also symmetric tridiagonal too. It follows that, whenever a Givens rotation $\Omega^{[i, j]}$ combines either two adjacent rows or two adjacent columns of a matrix, the total number of nonzero elements in the new combination of rows or columns is at most five. Thus there is a bound on the work of each rotation that is independent of n. Hence each QR iteration requires just $\mathcal{O}(n)$ operations.

Matlab demo: Check out the Matlab GUI for QR iteration at http: / /www. maths.cam.ac.uk/ undergrad/course/na/ii/qr_hex/qr_hex.php, which demonstrates the effects of the QR algorithm on a square matrix of your choice.

Notation 5.16 To analyse the matrices A_{k} that occur in the QR algorithm 5.13, we introduce

$$
\begin{equation*}
\bar{Q}_{k}=Q_{0} Q_{1} \cdots Q_{k}, \quad \bar{R}_{k}=R_{k} R_{k-1} \cdots R_{0}, \quad k=0,1, \ldots \tag{5.3}
\end{equation*}
$$

Note that \bar{Q}_{k} is orthogonal and \bar{R}_{k} upper triangular.
Lemma 5.17 (Fundamental properties of \bar{Q}_{k} and \bar{R}_{k}) A_{k+1} is related to the original matrix A by the similarity transformation $A_{k+1}=\bar{Q}_{k}^{T} A \bar{Q}_{k}$. Further, $\bar{Q}_{k} \bar{R}_{k}$ is the $Q R$ factorization of A^{k+1}.

Proof. We prove the first assertion by induction. By (5.2), we have $A_{1}=Q_{0}^{T} A_{0} Q_{0}=\bar{Q}_{0}^{T} A \bar{Q}_{0}$. Assuming $A_{k}=\bar{Q}_{k-1}^{T} A \bar{Q}_{k-1}$, equations (5.2)-(5.3) provide the first indentity

$$
A_{k+1}=Q_{k}^{T} A_{k} Q_{k}=Q_{k}^{T}\left(\bar{Q}_{k-1}^{T} A \bar{Q}_{k-1}\right) Q_{k}=\bar{Q}_{k}^{T} A \bar{Q}_{k}
$$

The second assertion is true for $k=0$, since $\bar{Q}_{0} \bar{R}_{0}=Q_{0} R_{0}=A_{0}=A$. Again, we use induction, assuming $\bar{Q}_{k-1} \bar{R}_{k-1}=A^{k}$. Thus, using the definition (5.3) and the first statement of the lemma, we deduce that

$$
\begin{aligned}
\bar{Q}_{k} \bar{R}_{k} & =\left(\bar{Q}_{k-1} Q_{k}\right)\left(R_{k} \bar{R}_{k-1}\right)=\bar{Q}_{k-1} A_{k} \bar{R}_{k-1}=\bar{Q}_{k-1}\left(\bar{Q}_{k-1}^{T} A \bar{Q}_{k-1}\right) \bar{R}_{k-1} \\
& =A \bar{Q}_{k-1} \bar{R}_{k-1}=A \cdot A^{k}=A^{k+1}
\end{aligned}
$$

and the lemma is true.

Remark 5.18 (Relation between QR and the power method) Assume that the eigenvalues of A have different magnitudes,

$$
\begin{equation*}
\left|\lambda_{1}\right|<\left|\lambda_{2}\right|<\cdots<\left|\lambda_{n}\right|, \quad \text { and let } \quad \boldsymbol{e}_{1}=\sum_{i=1}^{n} c_{i} \boldsymbol{w}_{i}=\sum_{i=1}^{m} c_{i} \boldsymbol{w}_{i} \tag{5.4}
\end{equation*}
$$

be the expansion of the first coordinate vector in terms of the normalized eigenvectors of A, where m is the greatest integer such that $c_{m} \neq 0$.

Consider the first columns of both sides of the matrix equation $A^{k+1}=\bar{Q}_{k} \bar{R}_{k}$.
By the power method arguments, the vector $A^{k+1} \boldsymbol{e}_{1}$ is a multiple of $\sum_{i=1}^{m} c_{i}\left(\lambda_{i} / \lambda_{m}\right)^{k+1} \boldsymbol{w}_{i}$, so the first column of A^{k+1} tends to be a multiple of \boldsymbol{w}_{m} for $k \gg 1$. On the other hand, if \boldsymbol{q}_{k} is the first column of \bar{Q}_{k}, then, since \bar{R}_{k} is upper triangular, the first column of $\bar{Q}_{k} \bar{R}_{k}$ is a multiple of \boldsymbol{q}_{k}.

Therefore \boldsymbol{q}_{k} tends to be a multiple of \boldsymbol{w}_{m}. Further, because both \boldsymbol{q}_{k} and \boldsymbol{w}_{m} have unit length, we deduce that $\boldsymbol{q}_{k}= \pm \boldsymbol{w}_{m}+\boldsymbol{h}_{k}$, where \boldsymbol{h}_{k} tends to zero as $k \rightarrow \infty$. Therefore,

$$
\begin{equation*}
A \boldsymbol{q}_{k}=\lambda_{m} \boldsymbol{q}_{k}+o(\mathbf{1}), \quad k \rightarrow \infty . \tag{5.5}
\end{equation*}
$$

Theorem 5.19 (The first column of A_{k}) Let conditions (5.4) be satisfied. Then, as $k \rightarrow \infty$, the first column of A_{k} tends to $\lambda_{m} \boldsymbol{e}_{1}$, making A_{k} suitable for deflation.

Proof. By Lemma 5.17, the first column of A_{k+1} is $\bar{Q}_{k}^{T} A \bar{Q}_{k} e_{1}$, and, using (5.5), we deduce that

$$
A_{k+1} \boldsymbol{e}_{1}=\bar{Q}_{k}^{T} A \bar{Q}_{k} \boldsymbol{e}_{1}=\bar{Q}_{k}^{T} A \boldsymbol{q}_{k} \stackrel{(5.5))}{=} \bar{Q}_{k}^{T}\left[\lambda_{m} \boldsymbol{q}_{k}+o(\mathbf{1})\right] \stackrel{(*)}{=} \lambda_{m} \boldsymbol{e}_{1}+o(\mathbf{1}),
$$

where in (*) we used that $\bar{Q}_{k}^{T} \boldsymbol{q}_{k}=\boldsymbol{e}_{1}$ by orthogonality of \bar{Q}, and that $\bar{Q}_{k} \boldsymbol{x}=\mathcal{O}(\boldsymbol{x})$ because orthogonal mapping is isometry.

Remark 5.20 (Relation between QR and inverse iteration) In practice, the statement of Theorem 5.19 is hardly ever important, because usually, as $k \rightarrow \infty$, the off-diagonal elements in the bottom row of A_{k+1} tend to zero much faster than the off-diagonal elements in the first column. The reason is that, besides the connection with the power method in Remark 5.18, the QR algorithm also enjoys a close relation with inverse iteration (Method 5.5).

Similar to before, let

$$
\begin{equation*}
0<\left|\lambda_{1}\right|<\left|\lambda_{2}\right|<\cdots<\left|\lambda_{n}\right|, \quad \text { and let } \quad \boldsymbol{e}_{n}^{T}=\sum_{i=1}^{n} c_{i} \boldsymbol{v}_{i}^{T}=\sum_{i=s}^{n} c_{i} \boldsymbol{v}_{i}^{T} \tag{5.6}
\end{equation*}
$$

be the expansion of the last coordinate row vector e_{n}^{T} in the basis of normalized left eigenvectors of A, i.e. $\boldsymbol{v}_{i}^{T} A=\lambda_{i} \boldsymbol{v}_{i}^{T}$, where s is the least integer such that $c_{s} \neq 0$.

Assuming that A is nonsingular, we can write the equation $A^{k+1}=\bar{Q}_{k} \bar{R}_{k}$ in the form $A^{-(k+1)}=$ $\bar{R}_{k}^{-1} \bar{Q}_{k}^{T}$. Consider the bottom rows of both sides of this equation: $\boldsymbol{e}_{n}^{T} A^{-(k+1)}=\left(\boldsymbol{e}_{n}^{T} \bar{R}_{k}^{-1}\right) \bar{Q}_{k}^{T}$.

By the inverse iteration arguments, the vector $\boldsymbol{e}_{n}^{T} A^{-(k+1)}$ is a multiple of $\sum_{i=s}^{n} c_{i}\left(\lambda_{s} / \lambda_{i}\right)^{k+1} \boldsymbol{v}_{i}^{T}$, so the bottom row of $A^{-(k+1)}$ tends to be multiple of \boldsymbol{v}_{s}^{T}. On the other hand, let \boldsymbol{p}_{k}^{T} be the bottom row of \bar{Q}_{k}^{T}. Since \bar{R}_{k} is upper triangular, its inverse \bar{R}_{k}^{-1} is upper triangular too, hence the bottom row of $\bar{R}_{k}^{-1} \bar{Q}_{k}^{T}$, is a multiple of \boldsymbol{p}_{k}^{T}.

Therefore, \boldsymbol{p}_{k}^{T} tends to a multiple of \boldsymbol{v}_{s}^{T}, and, because of their unit lengths, we have $\boldsymbol{p}_{k}^{T}=$ $\pm \boldsymbol{v}_{s}^{T}+\boldsymbol{h}_{k}^{T}$, where $\boldsymbol{h}_{k} \rightarrow 0$, i.e.,

$$
\begin{equation*}
\boldsymbol{p}_{k}^{T} A=\lambda_{s} \boldsymbol{p}_{k}^{T}+o(\mathbf{1}), \quad k \rightarrow \infty . \tag{5.7}
\end{equation*}
$$

Theorem 5.21 (The bottom row of A_{k}) Let conditions (5.6) be satisfied. Then, as $k \rightarrow \infty$, the bottom row of A_{k} tends to $\lambda_{s} \boldsymbol{e}_{n}^{T}$, making A_{k} suitable for deflation.
Proof. By Lemma 5.17, the bottom row of A_{k+1} is $\boldsymbol{e}_{n}^{T} \bar{Q}_{k}^{T} A \bar{Q}_{k}$, and similarly to the previous proof we obtain

$$
\begin{equation*}
\boldsymbol{e}_{n}^{T} A_{k+1}=\boldsymbol{e}_{n}^{T} \bar{Q}_{k}^{T} A \bar{Q}_{k}=\boldsymbol{p}_{k}^{T} A \bar{Q}_{k} \stackrel{(5.7)}{=}\left[\lambda_{s} \boldsymbol{p}_{k}^{T}+o(\mathbf{1})\right] \bar{Q}_{k}=\lambda_{s} \boldsymbol{e}_{n}^{T}+o(\mathbf{1}) \tag{5.8}
\end{equation*}
$$

the last equality by orthogonality of \bar{Q}_{k}.
Technique 5.22 (Single shifts) As we saw in Method 5.5, there is a huge difference between power iteration and inverse iteration: the latter can be accelerated arbitrarily through the use of shifts. The better we can estimate $s_{k} \approx \lambda_{s}$, the more we can accomplish by a step of inverse iteration with the shifted matrix $A_{k}-s_{k} I$. Theorem 5.21 shows that the bottom right element $\left(A_{k}\right)_{n n}$ becomes a good estimate of λ_{s}. So, in the single shift technique, the matrix A_{k} is replaced by $A_{k}-s_{k} I$, where $s_{k}=\left(A_{k}\right)_{n n}$, before the QR factorization:

$$
\begin{aligned}
A_{k}-s_{k} I & =Q_{k} R_{k} \\
A_{k+1} & =R_{k} Q_{k}+s_{k} I .
\end{aligned}
$$

A good approximation $s_{k}=\left(A_{k}\right)_{n n}$ to the eigenvalue λ_{s} generates even better approximation of $s_{k+1}=\left(A_{k+1}\right)_{n n}$ to λ_{s}, and convergence is accelerating at a higher and higher rate (it will be the so-called cubic convergence $\left|\lambda_{s}-s_{k+1}\right| \leq \gamma\left|\lambda_{s}-s_{k}\right|^{3}$). Note that, similarly to the original QR iteration, we have

$$
A_{k+1}=Q_{k}^{T}\left(Q_{k} R_{k}+s_{k} I\right) Q_{k}=Q_{k}^{T} A_{k} Q_{k}
$$

hence $A_{k+1}=\bar{Q}_{k}^{T} A \bar{Q}_{k}$, but note also that $\bar{Q}_{k} \bar{R}_{k} \neq A^{k+1}$, but we have instead

$$
\bar{Q}_{k} \bar{R}_{k}=\prod_{m=0}^{k}\left(A-s_{m} I\right)
$$

