Mathematical Tripos Part II: Michaelmas Term 2014
 Numerical Analysis - Examples' Sheet 2

11. Let $a(x)>0, x \in[0,1]$, be a given smooth function. We solve the diffusion equation with variable diffusion coefficient, $u_{t}=\left(a u_{x}\right)_{x}$, given with an initial condition for $t=0$ and boundary conditions at $x=0$ and $x=1, t \geq 0$, with the finite-difference method

$$
u_{m}^{n+1}=u_{m}^{n}+\mu\left[a_{m-1 / 2} u_{m-1}^{n}-\left(a_{m-1 / 2}+a_{m+1 / 2}\right) u_{m}^{n}+a_{m+1 / 2} u_{m+1}^{n}\right]
$$

where $a_{s}=a(s h), \mu=\frac{\Delta t}{(\Delta x)^{2}}, n \geq 0,1 \leq m \leq M$ and $h=\Delta x=\frac{1}{M+1}$. Prove that the local error is $\mathcal{O}\left(h^{4}\right)$. Then, justifying carefully every step of your analysis, show (e.g. by using the eigenvalue technique) that the method is stable for all $0<\mu<\frac{1}{2 a_{\max }}$, where $a_{\max }=\max _{x \in[0,1]} a(x)$. [Hint: In the second half, use Gershgorin theorem to show that the matrix A occuring in the relation $u^{n+1}=A u^{n}$ satisfies $\rho(A) \leq 1$.]
12. Apply the Fourier stability test to the difference equation

$$
u_{m}^{n+1}=\frac{1}{2}\left(2-5 \mu+6 \mu^{2}\right) u_{m}^{n}+\frac{2}{3} \mu(2-3 \mu)\left(u_{m-1}^{n}+u_{m+1}^{n}\right)-\frac{1}{12} \mu(1-6 \mu)\left(u_{m-2}^{n}+u_{m+2}^{n}\right),
$$

where $m \in \mathbb{Z}$. Deduce that the test is satisfied if and only if $0 \leq \mu \leq \frac{2}{3}$.
13. A square grid is drawn on the region $\{(x, t): 0 \leq x \leq 1, t \geq 0\}$ in \mathbb{R}^{2}, the grid points being $(m \Delta x, n \Delta x), 0 \leq m \leq M+1, n=0,1,2, \ldots$, where $\Delta x=\frac{1}{M+1}$ and M is odd. Let $u(x, t)$ be an exact solution of the wave equation $u_{t t}=u_{x x}$ and let the boundary values $u(x, 0), 0 \leq x \leq 1$, $u(0, t), t>0$, and $u(1, t), t>0$, be given. Further, an approximation to $\partial u / \partial t$ at $t=0$ allows each of the function values $u(m \Delta x, \Delta x), m=1,2, \ldots, M$, to be estimated to accuracy ϵ. Then, the difference equation

$$
u_{m}^{n+1}=u_{m+1}^{n}+u_{m-1}^{n}-u_{m}^{n-1}
$$

is applied to estimate u at the remaining grid points. Prove that all of the moduli of the errors $\left|u_{m}^{n}-u(m \Delta x, n \Delta x)\right|$ are bounded above by $\frac{1}{2} \epsilon M$, even when n is very large. [Hint: Verify that the local error is zero. For $n=1$ and $1 \leq m \leq M$, let the error in $u(m \Delta x, \Delta x)$ be $\delta_{m k} \epsilon$, where $\delta_{m k}$ is the Kronecker delta and where k is an arbitrary integer in $(1,2, \ldots, M)$. Draw a diagram that shows the contribution from this error to u_{m}^{n} for every m and $n>1$.]

Matlab demo: Download the Matlab GUI for Stability of 1D PDEs at http: / /www. maths. cam. ac.uk/undergrad/course/na/ii/pde_stability/pde_stability.php. Review the stability condition from the lectures Problem 2.28 and test its sharpness empirically using the GUI.
14. A rectangular grid is drawn on \mathbb{R}^{2}, with grid spacing Δx in the x-direction and Δt in the t direction. Let the difference equation

$$
\begin{aligned}
u_{m}^{n+1} & -2 u_{m}^{n}+u_{m}^{n-1} \\
& =\mu\left[a\left(u_{m-1}^{n+1}-2 u_{m}^{n+1}+u_{m+1}^{n+1}\right)+b\left(u_{m-1}^{n}-2 u_{m}^{n}+u_{m+1}^{n}\right)+c\left(u_{m-1}^{n-1}-2 u_{m}^{n-1}+u_{m+1}^{n-1}\right)\right]
\end{aligned}
$$

where $\mu=\frac{(\Delta t)^{2}}{(\Delta x)^{2}}$, be used to approximate solutions of the wave equation $u_{t t}=u_{x x}$. Deduce that, with constant μ, the local error is $\mathcal{O}\left((\Delta x)^{4}\right)$ if and only if the parameters a, b and c satisfy $a=c$ and $a+b+c=1$. Show also that, if these conditions hold, then the Fourier stability condition is achieved for all values of μ if and only if the parameters also satisfy $|b| \leq 2 a$. [Hint: In the second half, the roots of the characteristic equation satisfy $x_{1} x_{2}=1$. Then, $\left|x_{1}\right|,\left|x_{2}\right| \leq 1$ if $D \leq 0$, where D is the discriminant of the equation.]
15. For a given analytic function f we consider its truncated Fourier approximation on the interval $[-1,1]$, i.e.,

$$
f(x) \approx \phi_{N}(x)=\sum_{n=-N / 2+1}^{N / 2} \hat{f}_{n} e^{i \pi n x}, \quad \text { where } \hat{f}_{n}=\frac{1}{2} \int_{-1}^{1} f(\tau) e^{-i \pi n \tau} d \tau, \quad n \in \mathbb{Z}
$$

Prove that for every $s=1,2, \ldots$ it is true for every $n \in \mathbb{Z} \backslash\{0\}$ that

$$
\hat{f}_{n}=\frac{(-1)^{n-1}}{2} \sum_{m=0}^{s-1} \frac{1}{(\pi i n)^{m+1}}\left[f^{(m)}(1)-f^{(m)}(-1)\right]+\frac{1}{(\pi i n)^{s}} \widehat{f(s)}_{n}
$$

16. Unless f is analytic, the rate of decay of its Fourier harmonics can be very slow, certainly slower than $\mathcal{O}\left(N^{-1}\right)$. To explore this, let $f(x)=|x|^{-1 / 2}$. Prove that $\hat{f}_{n}=g(-n)+g(n)$, where $g(n)=$ $\int_{0}^{1} e^{i \pi n \tau^{2}} d \tau$. Moreover, with the error function erf defined as the integral

$$
\operatorname{erf} z=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-\tau^{2}} d \tau, \quad z \in \mathbb{C}
$$

show that its Fourier coefficients are

$$
\hat{f}_{n}=\frac{\operatorname{erf}(\sqrt{i \pi n})}{2 \sqrt{i n}}+\frac{\operatorname{erf}(\sqrt{-i \pi n})}{2 \sqrt{-i n}}
$$

and asymptotically for $|n| \gg 1$ we have $\hat{f}_{n}=\mathcal{O}\left(n^{-1 / 2}\right)$. [Hint: For the last identity use without proof the asymptotic estimate $\operatorname{erf}(\sqrt{i x})=1+\mathcal{O}\left(x^{-1}\right)$ for $x \in \mathbb{R},|x| \gg 1$.]
17. Consider the solution of the two-point boundary value problem

$$
(2-\cos \pi x) u^{\prime \prime}+u=1, \quad-1 \leq x \leq 1, \quad u(-1)=u(1)
$$

using the spectral method. Plugging the Fourier expansion of u into this differential equation, show that the \hat{u}_{n} obey a three-term recurrence relation. Calculate \hat{u}_{0} separately and using the fact that $\hat{u}_{-n}=\hat{u}_{n}$ (why?), prove further that the computation of \hat{u}_{n} for $-N / 2+1 \leq n \leq N / 2$ (assuming that $\hat{u}_{n}=0$ outside this range of n) reduces to the solution of an $(N / 2) \times(N / 2)$ tridiagonal system of algebraic equations.
18. Set

$$
\begin{equation*}
a(x)=\sum_{n=-\infty}^{\infty} \hat{a}_{n} e^{i \pi n x} \tag{2.1}
\end{equation*}
$$

the Fourier expansion of a. Explain why a is periodic with period 2. Further, let \tilde{n} denote some selected value of n. Evaluate $\frac{1}{2} \int_{-1}^{1} a(x) e^{-i \pi \tilde{n} x} d x$ with $a(x)$ given by (2.1). Doing so, you have just computed the Fourier coefficient $\hat{a}_{\tilde{n}}$. Now choose $a(x)=\cos \pi x$ and compute its corresponding Fourier coefficients. With this, derive an explicit expression for the coefficients in the N-term truncated Fourier approximation of the solution u of

$$
\left\{\begin{array}{l}
\left((\cos \pi x+2) u_{x}\right)_{x}=\sin \pi x, x \in[-1,1] \\
\text { periodic boundary conditions and normalisation condition } \int_{-1}^{1} u(x) d x=0 .
\end{array}\right.
$$

19. Let u be an analytic function in $[-1,1]$ that can be extended analytically into the complex plane and possesses a Chebyshev expansion $u=\sum_{n=0}^{\infty} \check{u}_{n} T_{n}$. Express u^{\prime} in an explicit form as a Chebyshev expansion.
20. The two-point ODE $u^{\prime \prime}+u=1, u(-1)=u(1)=0$, is solved by a Chebyshev method.
(a) Show that the odd coefficients are zero and that $u(x)=\sum_{n=0}^{\infty} \check{u}_{2 n} T_{2 n}(x)$. Express the boundary conditions as a linear condition of the coefficients $\check{u}_{2 n}$.
(b) Express the differential equation as an infinite set of linear algebraic equations in the coefficients $\check{u}_{2 n}$.
(c) Discuss how to truncate the linear system, keeping in mind the exponential convergence of the method and the floating-point precision of your computer.
(d) While $u(-1)=u(1)$ we cannot expect a standard spectral method to converge at spectral speed. Why?
Matlab demo: Compare your conclusions with the online documentation for solving this ODE at http://www.maths.cam.ac.uk/undergrad/course/na/ii/chebyshev/chebyshev. php. How are the boundary conditions enforced in practice?
