Mathematical Tripos Part II: Michaelmas Term 2014
 Numerical Analysis - Examples' Sheet 4

30. Let A be an $n \times n$ TST matrix such that $a_{1,1}=\alpha$ and $a_{1,2}=\beta$. Show that the Jacobi iteration for solving $A x=b$ converges if $2|\beta|<|\alpha|$. Moreover, prove that if convergence is required for all $n \geq 1$ then this inequality is necessary as well as sufficient.
31. Let A be an $n \times n$ TST matrix with $a_{k, k}=\alpha$ and $a_{k, k+1}=a_{k+1, k}=\beta$. Verify that $\alpha \geq 2|\beta|>0$ implies that the matrix is positive definite. Now, we precondition the conjugate gradient method for $\boldsymbol{A x}=\boldsymbol{b}$ with the Toeplitz lower-triangular bidiagonal matrix Q,

$$
q_{k, l}= \begin{cases}\gamma, & k=l \\ \delta, & k=l+1, \\ 0, & \text { otherwise } .\end{cases}
$$

Determine real numbers γ and δ such that $Q Q^{T}$ differs from A in just the $(1,1)$ coordinate. Prove that with this choice of γ and δ the preconditioned conjugate gradient method converges in just two iterations.
32. Let

$$
A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{2}^{T} & A_{3}
\end{array}\right), \quad S=\left(\begin{array}{cc}
A_{1} & O \\
O & A_{3}
\end{array}\right),
$$

where A_{1}, A_{3} are symmetric $n \times n$ matrices and the rank of the $n \times n$ matrix A_{2} is $r \leq n-1$. We further stipulate that the $(2 n) \times(2 n)$ matrix A is positive definite. Let $A_{1}=Q_{1} Q_{1}^{T}, A_{3}=Q_{3} Q_{3}^{T}$ be Cholesky factorizations and assume that the preconditioner Q is the lower-triangular Cholesky factor of S (hence $Q Q^{T}=S$). Prove that

$$
B=Q^{-1} A Q^{-T}=\left(\begin{array}{cc}
I & F \\
F^{T} & I
\end{array}\right), \quad \text { where } \quad F=Q_{1}^{-1} A_{2} Q_{3}^{-T} .
$$

Supposing that the eigenvalues of B are $\lambda_{1}, \ldots, \lambda_{2 n}$, while the eigenvalues of $F F^{T}$ are $\mu_{1}, \ldots, \mu_{n} \geq 0$, prove that, without loss of generality,

$$
\lambda_{k}=1-\sqrt{\mu_{k}}, \quad \lambda_{n+k}=1+\sqrt{\mu_{k}}, \quad k=1,2, \ldots, n .
$$

Prove that the rank of $F F^{T}$ is at most r, thereby deducing that B has at most $2 r+1$ distinct eigenvalues. What does this tell you about the number of steps before the preconditioned conjugate gradient method terminates in exact arithmetic?
Matlab demo: Download the Matlab GUI for Preconditioning of Conjugate Gradient from http : / / www . maths.cam.ac.uk/undergrad/course/na/ii/precond/precond.php. Setup an example for a system matrix A of the type just discussed and use the GUI to compute the eigenvalues of $A^{T} A$ and of the preconditioned matrix. How does the number of iterations the CG method needs changes? How robust is the CG method to perturbations of A or b by a small random matrix or vector respectively?
33. Let A be the 3×3 matrix

$$
A=\left(\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right),
$$

where λ is real and nonzero. Find an explicit expression for $A^{k}, k=1,2,3, \ldots$.
The sequence $\boldsymbol{x}^{(k+1)}, k=0,1,2, \ldots$, is generated by the power method $\boldsymbol{x}^{(k+1)}=A \boldsymbol{x}^{(k)} /\left\|A \boldsymbol{x}^{(k)}\right\|$, where $\boldsymbol{x}^{(0)}$ is a nonzero vector in \mathbb{R}^{3}. Deduce from your expression for A^{k} that the second and third components of $\boldsymbol{x}^{(k+1)}$ tend to zero as $k \rightarrow \infty$. Further, show that this remark implies $A \boldsymbol{x}^{(k+1)}-$ $\lambda \boldsymbol{x}^{(k+1)} \rightarrow \mathbf{0}$, so the power method tends to provide a solution to the eigenvalue equation.
Matlab demo: Reproduce your findings using the Matlab GUI for Computing eigenvalues and eigenvectors from http://www.maths.cam.ac.uk/undergrad/course/na/ii/eigenstuff/eigenstuff. php. How does the situation change when you change one of the λ-entries in A to another value?
34. Let A be a symmetric 2×2 matrix with distinct eigenvalues and normalized eigenvectors \boldsymbol{v}_{1} and \boldsymbol{v}_{2}. Given $\boldsymbol{x}^{(0)} \in \mathbb{R}^{2}$, the sequence $\boldsymbol{x}^{(k+1)}, k=0,1,2, \ldots$, is generated in the following way. The Rayleigh
quotient $\lambda_{k}=\boldsymbol{x}^{(k)} A \boldsymbol{x}^{(k)} /\left\|x^{(k)}\right\|^{2}$ is taken as an estimate for an eigenvalue of A, the vector norm being Euclidean. Then, inverse iteration gives

$$
\boldsymbol{y}=\left(A-\lambda_{k} I\right)^{-1} \boldsymbol{x}^{(k)}, \quad \text { and we set } \boldsymbol{x}^{(k+1)}=\boldsymbol{y} /\|\boldsymbol{y}\| .
$$

Show that, if $\boldsymbol{x}^{(k)}=\left(\boldsymbol{v}_{1}+\epsilon_{k} \boldsymbol{v}_{2}\right) /\left(1+\epsilon_{k}^{2}\right)^{1 / 2}$, where $\left|\epsilon_{k}\right|$ is small, then $\left|\epsilon_{k+1}\right|$ is of magnitude $\left|\epsilon_{k}\right|^{3}$. In other words, the method enjoys a third order rate of convergence.
35. The symmetric matrix

$$
A=\left(\begin{array}{rrr}
9 & -8 & 2 \\
-8 & 9 & -2 \\
2 & -2 & 10
\end{array}\right) \quad \text { has the eigenvector } \quad \boldsymbol{v}=\left(\begin{array}{r}
2 \\
-2 \\
1
\end{array}\right) .
$$

Calculate an orthogonal matrix Ω by a Householder transformation such that $\Omega \boldsymbol{v}$ is a multiple of the first coordinate vector \boldsymbol{e}_{1}. Then, form the product $\Omega^{T} A \Omega$. You should find that this matrix is suitable for deflation. Hence, identify all the eigenvalues and eigenvectors of A.
36. Show that the vectors $\boldsymbol{x}, A \boldsymbol{x}$ and $A^{2} \boldsymbol{x}$ are linearly dependent in the case

$$
A=\left(\begin{array}{rrrr}
4 & 5 & 2 & 0 \\
-26 & -14 & 1 & 4 \\
-2 & 2 & 3 & 1 \\
-43 & -8 & 13 & 9
\end{array}\right) \quad \text { and } \quad \boldsymbol{x}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
5
\end{array}\right)
$$

Hence, calculate two of the eigenvalues of A. Obtain by deflation a 2×2 matrix whose eigenvalues are the remaining eigenvalues of A. Then, find the other eigenvalues of A.
37. Use Householder transformations to generate a tridiagonal matrix that is similar to the matrix

$$
A=\left(\begin{array}{rrrr}
9 & -1 & 2 & 2 \\
-1 & 3 & 4 & 2 \\
2 & 4 & 14 & -3 \\
2 & 2 & -3 & 4
\end{array}\right)
$$

Your final matrix should be symmetric and should have the same trace as A.
38. Let A be an $n \times n$ symmetric tridiagonal matrix that is not deflatable (i.e., all the elements of A that are adjacent to the diagonal are nonzero). Prove that A has n distinct eigenvalues. Prove also that, if A has a zero eigenvalue and a single iteration of the QR algorithm is applied to A, then the resultant tridiagonal matrix is deflatable. [Hint: In the first part show that for each eigenvalue λ there is a unique solution to $A \boldsymbol{w}=\lambda \boldsymbol{w}$. In the second part deduce that a diagonal element of R is zero.]
39. Let A be a 2×2 symmetric matrix whose trace does not vanish, let $A_{0}=A$, and let the sequence of matrices $\left\{A_{k}: k=1,2, \ldots\right\}$ be calculated by applying the QR algorithm to A_{0} (without any origin shifts). Express the matrix element $\left(A_{k+1}\right)_{1,1}$ in terms of the elements of A_{k}. Show that, except in the special case when A is already diagonal, the sequence $\left\{\left(A_{k}\right)_{1,1} \quad: \quad k=0,1, \ldots\right\}$ converges monotonically to the eigenvalue of A of larger modulus. [Hint: The sign of this eigenvalue is the same as the sign of the trace of A. Also, for any symmetric matrix B, we have $B_{1,1}=\boldsymbol{e}_{1}^{T} B \boldsymbol{e}_{1}$ and $\lambda_{\text {min }}\|\boldsymbol{x}\|^{2} \leq$ $\boldsymbol{x}^{T} B \boldsymbol{x} \leq \lambda_{\max }\|\boldsymbol{x}\|^{2}$.]
40. Apply a single step of the QR method to the matrix

$$
A=\left(\begin{array}{ccc}
4 & 3 & 0 \\
3 & 1 & \epsilon \\
0 & \epsilon & 0
\end{array}\right)
$$

where $\epsilon>0$. You should find that the $(2,3)$ element of the new matrix is $\mathcal{O}\left(\epsilon^{3}\right)$ and that the new matrix has exactly the same trace as A.
Matlab demo: Download the Matlab GUI for Visual QR from http://www.maths.cam.ac.uk/ undergrad/course/na/ii/qr_hex/qr_hex.php and let the QR method run for the matrix A above. Try it with your own choice of a square matrices A and see what the QR method is doing to the entries of A. What happens if you choose a symmetric matrix A, what if A is upper Hessenberg?
41. (For those who like analysis). Let A be a real 4×4 upper Hessenberg matrix whose eigenvalues all have nonzero imaginary parts, where the moduli of the two complex pairs of eigenvalues are different. Prove that, if the matrices $A_{k}, k=0,1,2, \ldots$, are calculated from A by the QR algorithm, then the subdiagonal elements $\left(A_{k}\right)_{2,1}$ and $\left(A_{k}\right)_{4,3}$ stay bounded away from zero, but $\left(A_{k}\right)_{3,2}$ converges to zero as $k \rightarrow \infty$.

