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30. Let A be an n × n TST matrix such that a1,1 = α and a1,2 = β. Show that the Jacobi iteration for

solving Ax = b converges if 2|β| < |α|. Moreover, prove that if convergence is required for all n ≥ 1
then this inequality is necessary as well as sufficient.

31. Let A be an n×n TST matrix with ak,k = α and ak,k+1 = ak+1,k = β. Verify that α ≥ 2|β| > 0 implies
that the matrix is positive definite. Now, we precondition the conjugate gradient method for Ax = b
with the Toeplitz lower-triangular bidiagonal matrix Q,

qk,l =






γ, k = l

δ, k = l + 1,

0, otherwise.

Determine real numbers γ and δ such that QQT differs from A in just the (1, 1) coordinate. Prove
that with this choice of γ and δ the preconditioned conjugate gradient method converges in just two
iterations.

32. Let

A =

(
A1 A2

AT
2 A3

)

, S =

(
A1 O
O A3

)

,

where A1, A3 are symmetric n × n matrices and the rank of the n × n matrix A2 is r ≤ n − 1. We
further stipulate that the (2n) × (2n) matrix A is positive definite. Let A1 = Q1Q

T
1 , A3 = Q3Q

T
3 be

Cholesky factorizations and assume that the preconditioner Q is the lower-triangular Cholesky factor
of S (hence QQT = S). Prove that

B = Q−1AQ−T =

(
I F

F T I

)

, where F = Q−1
1 A2Q

−T
3 .

Supposing that the eigenvalues of B are λ1, . . . , λ2n, while the eigenvalues of FF T are μ1, . . . , μn ≥ 0,
prove that, without loss of generality,

λk = 1 −
√

μk, λn+k = 1 +
√

μk, k = 1, 2, . . . , n.

Prove that the rank of FF T is at most r, thereby deducing that B has at most 2r + 1 distinct eigenval-
ues. What does this tell you about the number of steps before the preconditioned conjugate gradient
method terminates in exact arithmetic?
Matlab demo: Download the Matlab GUI for Preconditioning of Conjugate Gradient from http://www.
maths.cam.ac.uk/undergrad/course/na/ii/precond/precond.php . Setup an example for
a system matrix A of the type just discussed and use the GUI to compute the eigenvalues of AT A and
of the preconditioned matrix. How does the number of iterations the CG method needs changes? How
robust is the CG method to perturbations of A or b by a small random matrix or vector respectively?

33. Let A be the 3 × 3 matrix

A =




λ 1 0
0 λ 1
0 0 λ



 ,

where λ is real and nonzero. Find an explicit expression for Ak, k = 1, 2, 3, . . ..
The sequence x(k+1), k = 0, 1, 2, . . ., is generated by the power method x(k+1) = Ax(k)/‖Ax(k)‖,
where x(0) is a nonzero vector in R3. Deduce from your expression for Ak that the second and third
components of x(k+1) tend to zero as k → ∞. Further, show that this remark implies Ax(k+1) −
λx(k+1) → 0, so the power method tends to provide a solution to the eigenvalue equation.
Matlab demo: Reproduce your findings using the Matlab GUI for Computing eigenvalues and eigenvec-
tors from http://www.maths.cam.ac.uk/undergrad/course/na/ii/eigenstuff/eigenstuff.
php . How does the situation change when you change one of the λ-entries in A to another value?

34. Let A be a symmetric 2 × 2 matrix with distinct eigenvalues and normalized eigenvectors v1 and v2.
Given x(0) ∈ R2, the sequence x(k+1), k = 0, 1, 2, . . ., is generated in the following way. The Rayleigh
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quotient λk = x(k)Ax(k)/‖x(k)‖2 is taken as an estimate for an eigenvalue of A, the vector norm being
Euclidean. Then, inverse iteration gives

y = (A − λkI)−1x(k), and we set x(k+1) = y/‖y‖.

Show that, if x(k) = (v1 + εkv2)/(1 + ε2k)1/2, where |εk| is small, then |εk+1| is of magnitude |εk|3. In
other words, the method enjoys a third order rate of convergence.

35. The symmetric matrix

A =




9 −8 2

−8 9 −2
2 −2 10



 has the eigenvector v =




2

−2
1



 .

Calculate an orthogonal matrix Ω by a Householder transformation such that Ωv is a multiple of the
first coordinate vector e1. Then, form the product ΩT AΩ. You should find that this matrix is suitable
for deflation. Hence, identify all the eigenvalues and eigenvectors of A.

36. Show that the vectors x, Ax and A2x are linearly dependent in the case

A =







4 5 2 0
−26 −14 1 4
−2 2 3 1

−43 −8 13 9





 and x =







1
0
1
5





 .

Hence, calculate two of the eigenvalues of A. Obtain by deflation a 2 × 2 matrix whose eigenvalues
are the remaining eigenvalues of A. Then, find the other eigenvalues of A.

37. Use Householder transformations to generate a tridiagonal matrix that is similar to the matrix

A =







9 −1 2 2
−1 3 4 2

2 4 14 −3
2 2 −3 4





 .

Your final matrix should be symmetric and should have the same trace as A.

38. Let A be an n × n symmetric tridiagonal matrix that is not deflatable (i.e., all the elements of A that
are adjacent to the diagonal are nonzero). Prove that A has n distinct eigenvalues. Prove also that, if
A has a zero eigenvalue and a single iteration of the QR algorithm is applied to A, then the resultant
tridiagonal matrix is deflatable. [Hint: In the first part show that for each eigenvalue λ there is a unique
solution to Aw = λw. In the second part deduce that a diagonal element of R is zero.]

39. Let A be a 2 × 2 symmetric matrix whose trace does not vanish, let A0 = A, and let the sequence
of matrices {Ak : k = 1, 2, . . .} be calculated by applying the QR algorithm to A0 (without any
origin shifts). Express the matrix element (Ak+1)1,1 in terms of the elements of Ak. Show that, except
in the special case when A is already diagonal, the sequence {(Ak)1,1 : k = 0, 1, . . .} converges
monotonically to the eigenvalue of A of larger modulus. [Hint: The sign of this eigenvalue is the same
as the sign of the trace of A. Also, for any symmetric matrix B, we have B1,1 = eT

1 Be1 and λmin‖x‖2 ≤
xT Bx ≤ λmax‖x‖2.]

40. Apply a single step of the QR method to the matrix

A =




4 3 0
3 1 ε
0 ε 0



 ,

where ε > 0. You should find that the (2, 3) element of the new matrix is O(ε3) and that the new
matrix has exactly the same trace as A.
Matlab demo: Download the Matlab GUI for Visual QR from http://www.maths.cam.ac.uk/
undergrad/course/na/ii/qr_hex/qr_hex.php and let the QR method run for the matrix A
above. Try it with your own choice of a square matrices A and see what the QR method is doing to
the entries of A. What happens if you choose a symmetric matrix A, what if A is upper Hessenberg?

41. (For those who like analysis). Let A be a real 4 × 4 upper Hessenberg matrix whose eigenvalues all
have nonzero imaginary parts, where the moduli of the two complex pairs of eigenvalues are different.
Prove that, if the matrices Ak, k = 0, 1, 2, . . ., are calculated from A by the QR algorithm, then the
subdiagonal elements (Ak)2,1 and (Ak)4,3 stay bounded away from zero, but (Ak)3,2 converges to
zero as k → ∞.
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